O;e;Of fice.org

OpenOffice.org 2.3

Developer’s Guide

This documentation is distributed under licenses restricting its use. You may
make copies of and redistribute it, but you may not modify or make derivative
works of this documentation without prior written authorization of Sun and its
licensors, if any.

Copyright 2007 Sun Microsystems, Inc.

Contents

1 Reader’s Guide
1.1 What This Manual Covers

1.2 How This Book is Organized

1.3 OpenOffice.org Version History

1.4 Related documentation

1.5 Conventions

1.6 Acknowledgments

2 First Steps

2.1 Programming with UNO

2.2 Fields of Application for UNO

2.3 Getting Started

231
232
233

234

Required Files

Installation Sets
Configuration

Enable Java in OpenOffice.org

Use Java UNO class files

Add the API Reference to yvour IDE
First Contact

Getting Started
Service Managers

Failed Connections

2.4 How to get Objects in OpenOffice.org

2.5 Working with Objects

251

252

253
254

255
25.6
257
258

Objects, Interfaces, and Services

Objects
Interfaces

Services

Using Services

Using Interfaces

Using Properties

Example: Working with a Spreadsheet Document

Common Types
Basic Types

Strings
Enum Types and Groups of Constants

Struct

Any
Sequence
Element Access

Name Access

29

29
29
30
30
31
31

33

33
33
34
34
34
35
35
35
35
36
36
38
39
39
40
41
41
41
41
43
45
47
47
48
49
49
50
50
51
52
53
55

Index Access 56

Enumeration Access 56

2.6 How do I know Which Type I Have? 57
2.7 Example: Hello Text, Hello Table, Hello Shape 58
2.71 Common Mechanisms for Text, Tables and Drawings 58
2.72 Creating Text, Tables and Drawing Shapes 63
Text, Tables and Drawings in Writer 63

Text, Tables and Drawings in Calc 64

Drawings and Text in Draw 65

Professional UNO 67
3.1 Introduction 67
3.2 API Concepts 68
3.2.1 Data Types 68
Simple Types 68

The Any Type 69

Interfaces 69

Services 71

Structs 76

Predefined Values 77

Sequences 78

Modules 78

Exceptions 78

Singletons 79

3.2.2 Understanding the API Reference 79
Specification, Implementation and Instances 79

Object Composition 80

3.3 UNO Concepts 81
3.3.1 UNO Interprocess Connections 81
Starting OpenOffice.org in Listening Mode 81

Importing a UNO Object 82

Characteristics of the Interprocess Bridge 83

Opening a Connection 84

Creating the Bridge 86

Closing a Connection 87

Example: A Connection Aware Client 88

3.3.2 Service Manager and Component Context 90
Service Manager 90

Component Context 91

3.3.3 Using UNO Interfaces 94

3.34 Properties 97

3.35 Collections and Containers 101

3.3.6 Event Model 104

3.3.7 Exception Handling 104

34

User-Defined Exceptions

Runtime Exceptions

Good Exception Handling
3.3.8 Lifetime of UNO Obijects

acquire() and release()

The XComponent Interface

Children of the XEventListener Interface

Weak Objects and References

Differences Between the Lifetime of C++ and Java Objects

3.3.9 Object Identity
UNO Language Bindings

3.4.1 Java Language Binding

Getting a Service Manager

Transparent Use of Office UNO Components
Handling Interfaces

Type Mappings

3.4.2 C++ Language Binding

Library Overview

System Abstraction Laver

File Access
Threadsafe Reference Counting

Threads and Thread Synchronization

Socket and Pipe

Strings
Establishing Interprocess Connections

Transparent Use of Office UNO Components

Tvpe Mappings

Using Weak References

Exception Handling in C++

3.43 OpenOffice.org Basic
Handling UNO Objects

Mapping of UNO and Basic Types

Case Sensitivity

Exception Handling

Listeners
3.44 Automation Bridge
Introduction

Requirements
A Quick Tour

The Service Manager Component

Using UNO from Automation

Using Automation Objects From UNO
Type Mappings

Automation Objects with UNO Interfaces

105
106
106
107
107
108
110
111
111
113
113
114
114
115
117
119
131
131
133
133
133
134
134
134
135
136
137
145
146
147
147
153
161
161
162
164
164
165
165
167
169
175
177
191

3.4.5

DCOM

The Bridge Services

Unsupported COM Features
CLI Language Binding

About the Language Binding

Terms

Requirements
The Language Binding DLLs

Type Mapping

Lifetime Management and Obtaining Interfaces

Writing Client Programs

4 Writing UNO Components

4.1

4.3
44

Required Files
4.2 Using UNOIDL to Specify New Components

421

422

Writing the Specification

Preprocessing
Grouping Definitions in Modules

Simple Types
Defining an Interface

Defining a Service

Defining a Sequence

Defining a Struct

Defining an Exception

Predefining Values

Using Comments

Singleton
Reserved Types

Published Entities
Generating Source Code from UNOIDL Definitions

Component Architecture

Core Interfaces to Implement

441

442

443

444
445

XInterface

Requirements for querylnterface()

Reference Counting

XTypeProvider
Provided Types

ImplementationID

XServicelnfo

Implementation Name

Supported Service Names
XWeak

XComponent
Disposing of an XComponent

194
196
198
199
199
199
199
200
200
212
213

217

218
219
219
220
220
221
222
225
227
228
229
229
231
232
232
232
233
234
235
237
238
238
238
239
239
239
239
240
240
241
241

4.5

4.6

4.7

446 Xlnitialization

447 XMain

448 XAggregation

449 XUnoTunnel

Simple Component in Java

451 Class Definition with Helper Classes
XInterface, XTypeProvider and XWeak
XServicelnfo

452 Implementing your own Interfaces

45.3 Providing a Single Factory Using Helper Method
454 Write Registration Info Using Helper Method
45,5 Implementing without Helpers

XInterface
XTypeProvider

XComponent
45.6 Storing the Service Manager for Further Use

45.7 Create Instance with Arguments

4.5.8 DPossible Structures for Java Components

One Implementation per Component File

Multiple Implementations per Component File

459 Running and Debugging Java Components

Debugging
The Java Environment in OpenOffice.org

Troubleshooting

C++ Component

4.6.1 Class Definition with Helper Template Classes
XInterface, XTypeProvider and XWeak
XServicelnfo

4.6.2 Implementing vour own Interfaces

4.6.3 Providing a Single Factory Using a Helper Method
4.64 Write Registration Info Using a Helper Method

4.6.5 Provide Implementation Environment

4.6.6 Implementing without Helpers

XInterface Implementation

XTypeProvider Implementation

Providing a Single Factory

Write Registration Info

4.6.7 Storing the Service Manager for Further Use

4.6.8 Create Instance with Arguments

4.6.9 Multiple Components in One Dynamic Link Library

4.6.10 Building and Testing C++ Components

Build Process

Test Registration and Use

Integrating Components into OpenOffice.org

241
242
242
242
243
244
244
244
245
246
247
248
248
248
249
250
250
251
251
253
255
257
258
259
261
262
262
262
263
263
265
265
265
266
267
267
268
269
269
269
270
270
270
272

4.8
49

4.7.1 Protocol Handler
Overview

Implementation

Configuration

Installation
472 Jobs

Overview

Execution Environment

Implementation

Initialization
Returning Results

Configuration
Installation

Using the vnd.sun.star.jobs: URL Schema

List of supported Events
473 Add-Ons
Overview

Guidelines

Configuration

Installation
474 Disable Commands

Configuration
Disabling Commands at Runtime

475 Intercepting Context Menus

Register and Remove an Interceptor

Writing an Interceptor

File Naming Conventions

Deployment Options for Components
49.1 Background: UNO Registries
UNO Type Library

Component Registration
492 Command Line Registry Tools

Component Registration Tool
UNO Type Library Tools
493 Manual Component Installation

Manually Merging a Registry and Adding it to uno.ini or soffice.ini

494 Bootstrapping a Service Manager

49.5 Special Service Manager Configurations
Dynamically Modifying the Service Manager

Creating a ServiceManager from a Given Registry File

4.10 The UNO Executable

Standalone Use Case

Server Use Case

Using the uno Executable

273
274
274
283
284
285
285
286
287
289
291
292
294
294
296
297
298
299
299
310
311
313
314
317
317
317
321
323
323
324
324
325
325
326
327
327
328
329
330
331
332
332
334
336

4.11

Accessing Dialogs
4.11.1 Assigning Component Methods to Control Events

4.11.2 Using Dialogs in Components

Instantiate and display a dialog

Accept events created by dialog controls

Extensions

5.1

52
5.3
54
5.5

5.6

5.7
5.8
5.9

5.10
511
5.12
5.13

Extension Manager

5.1.1 Deployment Items

5.1.2 Installing Extensions for All or a Single User

5.1.3 Extension Manager in OpenOffice.org

514 unopkg
5.1.5 Location of installed Extensions

File Format
Extension Identifiers

Extension Versions

description.xml

5.5.1 Description of XML Elements

5.5.2 Example

Simple License

5.6.1 Determining the Locale of the License

Dependencies
System Integration

Online Update of Extensions
59.1 Running Online - Update

59.2 Concept
5.9.3 Example Scenario for Providing Updates

Using an Atom Feed

5.9.4 Migration of Update Information

5.9.5 Description of the Update Information
5.9.6 Description of Atom Feed

59.7 Examples
description.xml Containing Direct Reference to the Update Information

Using the Atom Feed

Options Dialog
Creating the GUI of the Options Page

Saving and Reading Data for the Options Page

Defining the Usage of Options Pages

5.13.1 The Options Dialog of the Extension Manager
5.13.2 Adding a Leaf to an Existing Node

5.13.3 Adding Several Leaves

5.13.4 Grouping of Leaves

5.13.5 Adding Nodes
5.13.6 Adding Several Nodes

336
336
338
338
340

343

343
343
343
344
344
345
345
348
348
349
349
353
354
355
356
357
358
358
358
360
360
360
361
363
363
363
364
365
365
366
372
375
375
377
378
379
380

5.13.7 Absolute Position of Leaves 380

5.13.8 Grouping of Nodes 380
5.13.9 Assigning Nodes to Modules 381
5.13.10 Defining a Module 382
5.13.11 Absolute Position of Nodes 383
6 Advanced UNO 385
6.1 Choosing an Implementation Language 385
6.1.1 Supported Programming Environments 385
ava 386

Ct++ 386
OpenOffice.org Basic 386

OLE Automation Bridge 387

Python 387

6.1.2 Use Cases 387
ava 387

Ct++ 387
OpenOffice.org Basic 388

OLE Automation 388

Python 388

6.1.3 Recommendation 388
6.2 Language Bindings 388
6.2.1 Implementing UNO Language Bindings 389
Overview of Language Bindings and Bridges 389
Implementation Options 390

6.2.2 UNO C++ bridges 391
Binary UNO Interfaces 392

C++ Proxy 393

Binary UNO Proxy 394

Additional Hints 395

6.2.3 UNO Reflection API 396
XTypeProvider Interface 396

Converter Service 396
CoreReflection Service 396

6.2.4 XlInvocation Bridge 400
Scripting Existing UNO Objects 400
Implementing UNO objects 403

Example: Python Bridge PyUNO 404

6.2.5 Implementation Loader 406
Shared Library Loader 408

Bridges 408

6.2.6 Help with New Language Bindings 409
6.3 Differences Between UNO and Corba 409

6.4 UNO Design Patterns and Coding Styles 411

6.4.1

Double-Checked Locking

7 Office Development

7.1 OpenOffice.org Application Environment

7.2

7.1.1

7.1.2
713

714

7.1.5

7.1.6

7.1.7

Overview
Desktop Environment
Framework API

Using the Desktop

Using the Component Framework

Getting Frames, Controllers and Models from Each Other

Frames
Controllers.
Models

Window Interfaces

Creating Frames Manually

Handling Documents

Loading Documents

Closing Documents

Storing Documents

Printing Documents

Using the Dispatch Framework
Command URL

Processing Chain

Dispatch Process
Dispatch Results
Dispatch Interception

Java Window Integration
The Window Handle
Using the Window Handle
More Remote Problems

Common Application Features

721

722

723

Clipboard
Using the Clipboard

OpenOffice.org Clipboard Data Formats

Internationalization

Introduction

Overview and Using the API

Implementing a New Locale
Linguistics

Services Overview

Using Spellchecker
Using Hyphenator

Using Thesaurus

Events

411

415

415
415
416
417
423
427
428
429
434
436
439
440
442
442
450
455
456
457
457
457
459
462
463
464
464
465
467
467
467
468
472
472
472
473
475
485
485
488
489
490
491

Implementing a Spell Checker

Implementing a Hyphenator

Implementing a Thesaurus

724 Integrating Import and Export Filters
Approaches
Document API Filter Development
XML Based Filter Development
725 Number Formats
Managing Number Formats

Applyving Number Formats

7.2.6 Document Events
7.2.7 Path Organization
Path Settings
Path Variables
7.2.8 OpenOffice.org Single Sign-On API
Overview
Implementing the OpenOffice.org SSO API

8 Text Documents

8.1

8.2

8.3

QOverview
8.1.1 Example: Fields in a Template

8.1.2 Example: Visible Cursor Position

Handling Text Document Files

8.2.1 Creating and Loading Text Documents

8.2.2 Saving Text Documents

Storing

Exporting
8.2.3 Printing Text Documents

Printer and Print Job Settings

Printing Multiple Pages on one Page

Working with Text Documents
8.3.1 Word Processing

Editing Text
Iterating over Text

Inserting a Paragraph where no Cursor can go

Sorting Text
Inserting Text Files

Auto Text

8.3.2 Formatting

8.3.3 Navigating
Cursors

Locating Text Contents

Search and Replace
8.3.4 Tables

492
494
495
495
496
496
510
517
518
519
521
526
526
533
542
542
543

547

547
550
551
553
553
554
554
554
555
555
556
557
557
557
561
563
563
563
563
564
571
571
572
572
576

8.4

8.5

8.3.5
8.3.6
8.3.7

8.3.8
8.3.9
8.3.10

8.3.11
8.3.12

Table Architecture

Named Table Cells in Rows, Columns and the Table Cursor

Indexed Cells and Cell Ranges

Table Naming, Sorting, Charting and Autoformatting

Text Table Properties

Inserting Tables

Accessing Existing Tables
Text Fields
Bookmarks

Indexes and Index Marks

Indexes
Index marks

Reference Marks

Footnotes and Endnotes
Shape Obijects in Text
Base Frames vs. Drawing Shapes

Text Frames

Embedded Objects

Graphic Objects

Drawing Shapes
Redline

Ruby

Overall Document Features

8.4.1

8.4.2

8.4.3

8.4.4
8.4.5
8.4.6
8.4.7

Styles
Character Styles

Paragraph Styles

Frame Styles
Page Styles
Numbering Styles

Settings
General Document Information

Document Properties

Creating Default Settings

Creating Document Settings

Line Numbering and Outline Numbering

Paragraph and Outline Numbering

Line Numbering

Number Formats

Text Sections

Page Layout
Columns

Link targets

Text Document Controller

8.5.1

TextView

576
579
581
582
582
583
587
588
594
595
595
598
599
600
602
602
605
607
609
610
613
613
614
614
616
616
616
617
617
618
618
618
619
619
619
619
622
622
622
624
624
626
627
627

8.5.2 TextViewCursor

9 Spreadsheet Documents

9.1

9.2

9.3

Overview

9.1.1 Example: Adding a New Spreadsheet
9.1.2 Example: Editing Spreadsheet Cells
Handling Spreadsheet Document Files

9.2.1 Creating and Loading Spreadsheet Documents

9.2.2 Saving Spreadsheet Documents

Storing
Exporting

Filter Options
9.2.3 Printing Spreadsheet Documents

Printer and Print Job Settings

Page Breaks and Scaling for Printout

Print Areas
Working with Spreadsheet Documents

9.3.1 Document Structure

Spreadsheet Document

Spreadsheet Services - Overview

Spreadsheet

Cell Ranges
Cells

Cell Ranges and Cells Container

Columns and Rows

9.3.2 Formatting
Cell Formatting

Character and Paragraph Format

Indentation
Equally Formatted Cell Ranges
Table Auto Formats
Conditional Formats

9.3.3 Navigating
Cell Cursor.
Referencing Ranges by Name

Named Ranges

Label Ranges
Queryving for Cells with Specific Properties

Search and Replace

934 Sorting
Table Sort Descriptor

9.3.5 Database Operations

Filtering
Subtotals

628

631

631
633
634
634
634
635
635
636
636
639
639
640
640
641
641
641
645
656
658
665
669
672
674
674
674
675
675
679
683
684
685
687
687
689
691
693
693
693
695
696
698

Database Import 699

Database Ranges 700

9.3.6 Linking External Data 701
Sheet Links 701

Cell Area Links 703

DDE Links 704

9.3.7 DataPilot 705
DataPilot Tables 705

DataPilot Sources 709

9.3.8 Protecting Spreadsheets 718
9.3.9 Sheet Outline 718
9.3.10 Detective 718
9.3.11 Other Table Operations 719
Data Validation 719

Data Consolidation 720

Charts 721

Scenarios 722

9.4 Overall Document Features 725
9.4.1 Styles 725

Cell Styles 726

Page Styles 727

9.4.2 Function Handling 728
Calculating Function Results 728

Information about Functions 729

Recently Used Functions 730

943 Settings 730

9.5 Spreadsheet Document Controller 731
9.5.1 Spreadsheet View 731
9.5.2 View Panes 733
9.5.3 View Settings 734
9.54 Range Selection 734

9.6 Spreadsheet Add-Ins 736
9.6.1 Function Descriptions 737
9.6.2 Service Names 737
9.6.3 Compatibility Names 737
9.6.4 Custom Functions 738
9.6.5 Variable Results 738

10 Drawing Documents and Presentation Documents 741
10.1 Overview 741
10.1.1 Example: Creating a Simple Organizational Chart 743

10.2 Handling Drawing Document Files 745
10.2.1 Creating and Loading Drawing Documents 745

10.2.2 Saving Drawing Documents 746

10.3

10.4

10.5

10.6

10.7

Storing
Exporting

Filter Options
10.2.3 Printing Drawing Documents

Printer and Print Job Settings

Special Print Settings
Working with Drawing Documents

10.3.1 Drawing Document

Document Structure

Page Handling
Page Partitioning

10.3.2 Shapes

Bezier Shapes
Shape Operations
10.3.3 Inserting Files

10.3.4 Navigating
Handling Presentation Document Files

10.4.1 Creating and Loading Presentation Documents

10.4.2 Printing Presentation Documents

Working with Presentation Documents

10.5.1 Presentation Document

10.5.2 Presentation Settings
Custom Slide Show

Presentation Effects

Slide Transition

Animations and Interactions

Overall Document Features

10.6.1 Styles

Graphics Styles
Presentation Stvles

10.6.2 Settings
10.6.3 Page Formatting

Drawing and Presentation Document Controller

10.7.1 Setting the Current Page, Using the Selection

10.7.2 Zooming
10.7.3 Other Drawing-Specific View Settings

11 Charts

11.1
11.2

Overview

Handling Chart Documents

11.2.1 Creating Charts
Creating and Adding a Chart to a Spreadsheet

Creating a Chart OLE Object in Draw and Impress

Setting the Chart Type

746
747
748
749
749
751
751
751
751
752
753
753
759
762
774
774
775
775
775
775
775
777
778
780
780
781
785
785
785
787
788
789
790
790
790
791

793

793
793
793
793
794
795

11.2.2 Accessing Existing Chart Documents 796

11.3 Working with Charts 796
11.3.1 Document Structure 796
11.3.2 Data Access 798
11.3.3 Chart Document Parts 800

Common Parts of all Chart Types 801
Features of Special Chart Types 805

11.4 Chart Document Controller 808

11.5 Chart Add-Ins 808
11.5.1 Prerequisites 808
11.5.2 How Add-Ins work 808
11.5.3 How to Apply an Add-In to a Chart Document 810

12 OpenOffice.org Basic and Dialogs 813
12.1 First Steps with OpenOffice.org Basic 814
Step By Step Tutorial 814

A Simple Dialog 818

12.2 OpenOffice.org Basic IDE 825

12.2.1 Managing Basic and Dialog Libraries 825
OpenOffice.org Basic Macros Dialog 825
OpenOffice.org Basic Macro Organizer Dialog 828

12.2.2 Basic IDE Window 835
Basic Source Editor and Debugger 836
Dialog Editor 838

12.2.3 Assigning Macros to GUI Events 843

12.2.4 Dialog Localization 845
Technical Background 850

12.3 Features of OpenOffice.org Basic 852
12.3.1 Functional Range Overview 852

Screen 1/0 Functions 852
File1/0 852
Date and Time Functions 853
Numeric Functions 854
String Functions 854
Specific UNO Functions 855

12.3.2 Accessing the UNO API 855
StarDesktop 855
ThisComponent 855

12.3.3 Special Behavior of OpenOffice.org Basic 857
Threads 857
Rescheduling 857

12.4 Advanced Library Organization 858
12.4.1 General Structure 859

12.4.2 Accessing Libraries from Basic 861

Librarv Container Properties in Basic 861

Loading Libraries 861

Library Container API 862

12.4.3 Variable Scopes 864

12.5 Programming Dialogs and Dialog Controls 865
12.5.1 Dialog Handling 866
Showing a Dialog 866

Getting the Dialog Model 866

Dialog as Control Container 866

Dialog Properties 867

Common Properties 867

Multi-Page Dialogs 868

12.5.2 Dialog Controls 868
Command Button 868

Image Control 869

Check Box 869

Option Button 869

Label Field 870

Text Field 870

List Box 871

Combo Box 871

Horizontal /Vertical Scroll Bar 872

Group Box 873

Progress Bar 873

Horizontal /Vertical Line 874

Date Field 874

Time Field 874

Numeric Field 875

Currency Field 875

Formatted Field 875

Pattern Field 875

File Control 876

12.6 Creating Dialogs at Runtime 877
12.7 Library File Structure 880
12.7.1 Application Library Container 880
12.7.2 Document Library Container 882

12.8 Library Deployment 884
Package Structure 885

Path Settings 885

Additional Options 886

13 Database Access 887
13.1 Overview 887

13.1.1 Capabilities 887

Platform Independence 887

Functioning of the OpenOffice.org API Database Integration 887
Integration with OpenOffice.org API 888

13.1.2 Architecture 888
13.1.3 Example: Querying the Bibliography Database 888
13.2 Data Sources in OpenOffice.org API 890
13.2.1 DatabaseContext 890
13.2.2 DataSources 892
The DataSource Service 892

Queries 894

Forms and Reports 902

Document Links 906

Tables and Columns 907

13.2.3 Connections 912
Understanding Connections 912
Connecting Using the DriverManager and a Database URL 915
Connecting Through a Specific Driver 916

Driver Specifics 916
Connection Pooling 921

Piggvback Connections 922

13.3 Manipulating Data 922
13.3.1 The RowSet Service 922
Usage 922

Events and Other Notifications 926

Clones of the RowSet Service 928

13.3.2 Statements 929
Creating Statements 929

Inserting and Updating Data 930

Getting Data from a Table 932

13.3.3 Result Sets 933
Retrieving Values from Result Sets 936

Moving the Result Set Cursor 936

Using the getXXX Methods 937

Scrollable Result Sets 939
Modifiable Result Sets 941

Update 941

Insert 943

Delete 944

Seeing Changes in Result Sets 945

13.3.4 ResultSetMetaData 946
13.3.5 Using Prepared Statements 946
When to Use a PreparedStatement Object 946

Creating a PreparedStatement Object 947

Supplying Values for PreparedStatement Parameters 947

13.3.6 PreparedStatement From DataSource Queries 948

13.4 Database Design 949
13.4.1 Retrieving Information about a Database 949
Retrieving General Information 949

Determining Feature Support 950

Database Limits 950

SOL Objects and their Attributes 950

13.4.2 Using DDL to Change the Database Design 951
13.4.3 Using SDBCX to Access the Database Design 954

The Extension Layer SDBCX 954

Catalog Service 955

Table Service 956

Column Service 959

Index Service 960

Key Service 962

View Service 964

Group Service 964

User Service 966

The Descriptor Pattern 966

Adding an Index 969

Creating a User 969

Adding a Group 969

13.5 Using DBMS Features 970
13.5.1 Transaction Handling 970
13.5.2 Stored Procedures 971

13.6 Writing Database Drivers 971
13.6.1 SDBC Driver 972
13.6.2 Driver Service 973
13.6.3 Connection Service 974
13.6.4 XDatabaseMetaData Interface 975
13.6.5 Statements 976
PreparedStatement 977

Result Set 977

13.6.6 Support Scalar Functions 977
Open Group CLI Numeric Functions 977

Open Group CLI String Functions 978

Open Group CLI Time and Date Functions 979

Open Group CLI System Functions 979

Open Group CLI Conversion Functions 980

Handling Unsupported Functionality 980

14 Forms 981
14.1 Introduction 981

14.2 Models and Views 982

14.3

144

14.5

14.6

14.7

14.8
14.9

14.2.1 The Model-View Paradigm
14.2.2 Models and Views for Form Controls

14.2.3 Model-View Interaction
14.2.4 Form Laver Views
View Modes

Locating Controls
Focussing Controls

Form Elements in the Document Model
14.3.1 A Hierarchy of Models
FormComponent Service

FormComponents Service
Logical Forms
Forms Container
Form Control Models
14.3.2 Control Models and Shapes
Programmatic Creation of Controls

Form Components

14.4.1 Basics
Control Models
Forms

14.4.2 HTML Forms

Data Awareness

14.5.1 Forms
Forms as Row Sets

Loadable Forms

Sub Forms
Filtering and Sorting

Parameters
14.5.2 Data Aware Controls

Control Models as Bound Components

Committing Controls

External value suppliers

14.6.1 Value Bindings

Form Controls accepting Value Bindings

14.6.2 External List Sources
Validation

14.7.1 Validation in OpenOffice.org
14.7.2 Validations and Bindings
Scripting and Events

Common Tasks

149.1 Initializing Bound Controls
14.9.2 Automatic Key Generation
14.9.3 Data Validation

14.9.4 Programmatic Assigcnment of Scripts to Events

982
982
983
984
984
984
984
985
985
985
985
986
986
987
988
989
990
990
990
992
993
993
993
993
993
994
995
996
997
998
999
1000
1001
1002
1005
1007
1010
1010
1010
1012
1012
1012
1013
1014

15 Universal Content Broker 1017

15.1 Overview 1017
15.1.1 Capabilities 1017
15.1.2 Architecture 1017

15.2 Services and Interfaces 1018

15.3 Content Providers 1020

15.4 Using the UCB API 1020
15.4.1 Instantiating the UCB 1021
15.4.2 Accessing a UCB Content 1021
15.4.3 Executing Content Commands 1022
15.4.4 Obtaining Content Properties 1023
15.4.5 Setting Content Properties 1024
15.4.6 Folders 1025

Accessing the Children of a Folder 1025
15.4.7 Documents 1027
Reading a Document Content 1027
Storing a Document Content 1029
15.4.8 Managing Contents 1029
Creating 1029
Deleting 1031
Copying, Moving and Linking 1032

15.5 UCB Configuration 1033
15.5.1 UCP Registration Information 1033
15.5.2 Unconfigured UCBs 1033
15.5.3 Preconfigured UCBs 1035
15.5.4 Content Provider Proxies 1036

16 Configuration Management 1039

16.1 Overview 1039
16.1.1 Capabilities 1039
16.1.2 Architecture 1039

16.2 Object Model 1042

16.3 Configuration Data Sources 1044
16.3.1 Connecting to a Data Source 1044
16.3.2 Using a Data Source 1047

16.4 Accessing Configuration Data 1049
16.4.1 Reading Configuration Data 1049
16.4.2 Updating Configuration Data 1053

16.5 Customizing Configuration Data 1060
16.5.1 Creating a Custom Configuration Schema 1061
16.5.2 Preparing Custom Configuration Data 1062
16.5.3 Installing Custom Configuration Data 1063

16.6 Adding a Backend Data Store 1064

17 JavaBean for office components 1065

17.1 Introduction 1065
17.2 Using the OOoBean 1065
17.3 The OOoBean by Example 1066
17.4 API Overview 1067
17.5 Configuring the Office Bean 1068
17.5.1 Default Configuration 1069
17.5.2 Customized Configuration 1070

17.6 Internal Architecture 1071
17.6.1 The Internal Office Bean API 1071
17.6.2 OfficeConnection Interface 1072
17.6.3 OfficeWindow Interface 1073
17.6.4 ContainerFactory Interface 1073
17.6.5 LocalOfficeConnection and LocalOfficeWindow 1073

18 Accessibility 1075
18.1 Overview 1075
18.2 Bridges 1076
18.3 Accessibility Tree 1076
18.4 Content Information 1077
18.5 Listeners and Broadcasters 1077
18.6 Implementing Accessible Objects 1078
18.6.1 Implementation Rules 1078
18.6.2 Services 1078

18.7 Using the Accessibility API 1079
18.7.1 A Simple Screen Reader 1079
Features 1080

Class Overview 1081

Putting the Accessibility Interfaces to Work 1082

19 Scripting Framework 1095
19.1 Introduction 1095
19.1.1 Structure of this Chapter 1095
19.1.2 Who Should Read this Chapter 1096

19.2 Using the Scripting Framework 1096
19.2.1 Running macros 1096
19.2.2 Editing, Creating and Managing Macros 1097

The Organizer dialogs for BeanShell and JavaScript 1098

BeanShell Editor 1099

JavaScript Editor 1099

Basic and Dialogs 1101

Macro Recording 1101

19.3 Writing Macros 1101

19.4

19.5 Writing a LanguageScriptProvider UNO Component Using the Java Helper Classes

19.6 Writing a LanguageScriptProvider UNO Component from scratch

API

19.3.1 The HelloWorld macro
19.3.2 _Using the OpenOffice.org API from macros
19.3.3 Handling arguments passed to macros

19.3.4 Creating dialogs from macros

19.3.5 Compiling and Deploving Java macros

How the Scripting Framework works

19.5.1 The ScriptProvider abstract base class
19.5.2 Implementing the XScript interface

19.5.3 Implementing the ScriptEditor interface

19.5.4 Building and registering vour ScriptProvider

19.6.1 Scripting Framework URI Specification

19.6.2 Storage of Scripts

19.6.3 Implementation
19.6.4 Integration with Extension Manager

1101
1102
1103
1103
1104
1105
1107
1107
1109
1110
1111
1111
1112
1113
1113
1117

Overview of how ScriptingFramework integrates with the Extension Manager

1118

20 Graphical User Interfaces

20.1

20.2
20.3
20.4

20.5

Overview
20.1.1 Implementation Details

20.1.2 Basic Concepts
Exception Handling

Dialogs and Controls

Dialog Creation

20.4.1 Instantiation of a Dialog

20.4.2 Setting Dialog Properties
Multi-Page Dialogs

20.4.3 Adding Controls to a Dialog

20.4.4 Displaying Dialogs

Dialog Handling
20.5.1 Events
Mouse Listeners

Keyboard Listener

Focus Listener
Paint Listener
Control element-specific events

20.5.2 Dialog Controls
Common Properties

Font-specific Properties

Other common Properties

Property propagation between model and control
Common Workflow to add Controls

1121

1122
1122
1122
1122
1123
1123
1123
1124
1125
1126
1126
1126
1127
1127
1128
1128
1128
1128
1129
1129
1130
1131
1132
1133

The Example Listings
Label Field
Command Button
Image Control

Check Box

Radio Button

Scroll Bar.

List Box

Combo Box.

Progress Bar
Horizontal /Vertical Line Control

Group Box.

Text Field

Text Field Extensions
Formatted Field
Numeric Field
Currency Field
Date Field
Timefield

Pattern Field
Roadmap Control
File Control

File Picker

Message Box

20.5.3 The Toolkit Service

Dockable Windows

20.5.4 Creating Menus

Accessibility
Rendering

20.6 Summarizing Example to create a UNO Dialog

Appendix A: OpenOffice.org API-Design-Guidelines
A1 General Design Rules

A2

All
Al2
Al3
Al4
Al5
Alb

Universality
Orthogonality
Inheritance
Uniformity

Correct English
Identifier Naming Convention

Definition of API Elements

A21
A22
A23
A24

Attributes
Methods
Interfaces

Properties

1133
1134
1135
1137
1139
1140
1141
1143
1144
1145
1145
1146
1146
1148
1149
1151
1152
1152
1154
1155
1156
1159
1160
1161
1162
1164
1165
1166
1168
1168

1173

1173
1173
1174
1174
1174
1174
1174
1175
1175
1176
1177
1178

A.25 Events
A.2.6 Services

A.2.7 Exceptions
A.2.8 Enums

A29 Typedefs
A.2.10 Structs

A.2.11 Parameter

A.3 Special Cases
A.4 Abbreviations

A.5 Source Files and Types

Appendix B: IDL Documentation Guidelines

B.1

B.2

B.3

B.4

Introduction

B.1.1 Process

B.1.2 File Assembly

B.1.3 Readable & Editable Structure
B.1.4 Contents

File structure

B.2.1 General

B.2.2 File-Header

B.2.3 File-Footer

Element Documentation

B.3.1 General Element Documentation

B.3.2 Example for a Major Element Documentation

B.3.3 Example for a Minor Element Documentation

Markups and Tags
B.4.1 Special Markups

B.4.2 Special Documentation Tags
B.4.3 Useful XHTML Tags

Appendix C: Universal Content Providers

C1

Cc2

C3

The Hierarchy Content Provider

C.1.1 Preface

C.1.2 HCP Contents

C.1.3 Creation of New HCP Content
C.14 URL Scheme for HCP Contents

C.1.5 Commands and Properties
The File Content Provider

C.2.1 Preface

C.2.2 File Contents

C.2.3 Creation of New File Contents
C.24 URL Schemes for File Contents
C.2.5 Commands and Properties
The FTP Content Provider

1178
1179
1179
1180
1180
1181
1181
1182
1182
1183

1185

1185
1185
1185
1186
1186
1186
1186
1187
1188
1188
1188
1189
1190
1190
1190
1191
1193

1197

1197
1197
1197
1198
1198
1199
1199
1199
1199
1200
1200
1201
1201

C.3.1 Preface 1201

C.3.2 FTP Contents 1201
C.3.3 Creation of New FTP Content 1202
C.3.4 URL Scheme for FTP Contents 1203
C.3.5 Commands and Properties 1203

C.4 The WebDAYV Content Provider 1204
C.4.1 Preface 1204
C.4.2 DCP Contents 1204
C.4.3 Creation of New DCP Contents 1205
C.4.4 Authentication 1205
C4.5 Property Handling 1205
C.4.6 URL Scheme for DCP Contents 1206
C.4.7 Commands and Properties 1207

C.5 The Package Content Provider 1207
C.5.1 Preface 1207
C.5.2 PCP Contents 1207
C.5.3 Creation of New PCP Contents 1208
C.5.4 URL Scheme for PCP Contents 1208
C.5.5 Commands and Properties 1209

C.6 The Help Content Provider 1209
C.6.1 Preface 1209
C.6.2 Help Content Provider Contents 1210
C.6.3 URL Scheme for Help Contents 1210
C.6.4 Properties and Commands 1211
Appendix D: UNOIDL Syntax Specification 1215
Glossary 1217

Index 1235

Reader’s Guide

1.1 What This Manual Covers

This manual describes how to write programs using the component technology UNO (Universal
Network Objects) with OpenOffice.org.

Most examples provided are written in Java. As well as Java, the language binding for C++, the
UNO access for OpenOffice.org Basic and the OLE Automation bridge that uses OpenOffice.org
through Microsoft’s component technology COM/DCOM is described.

1.2 How This Book is Organized

First Steps
The First Steps chapter describes the setting up of a Java UNO development environment to
achieve the solutions you need. At the end of this chapter, you will be equipped with the essen-
tials required for the following chapters about the OpenOffice.org applications.

Professional UNQO Projects
This chapter introduces API and UNO concepts and explains the specifics of the programming
languages and technologies that can be used with UNO. It will help you to write industrial-
strength UNO programs, use one of the languages besides Java or improve your understanding
of the API reference.

Writing UNO Components
This chapter describes how to write UNO components. It also provides an insight into the
UNOIDL (UNO Interface Definition Language) language and the inner workings of service
manager. Before beginning this chapter, you should be familiar with the First Steps and Profes-
sional UNO chapters.

Advanced UNO
This chapter describes the technical basis of UNO, how the language bindings and bridges
work, how the service manager goes about its tasks and what the core reflection actually does.

Office Development
This chapter describes the application framework of the OpenOffice.org application that
includes how the OpenOffice.org API deals with the OpenOffice.org application and the
features available across all parts of OpenOffice.org.

29

30

Text Documents - Spreadsheet Documents - Drawings and Presentations Chart
These chapters describes how OpenOffice.org revolves around documents. These chapters
teach you what to do with these documents programmatically.

Basic and Dialogs
This chapter provides the functionality to create and manage Basic macros and dialogs.

Database Access
This chapter describes how you can take advantage of this capability in your own projects.
OpenOffice.org can connect to databases in a universal manner.

Forms
This chapter describes how OpenOffice.org documents contain form controls that are
programmed using an event-driven programming model. The Forms chapter shows you how to
enhance your documents with controls for data input.

UCB
This chapter describes how the Universal Content Broker is the generic resource access service
used by the entire office application. It handles not only files and directories, but hierarchic and
non-hierarchic contents, in general.

OpenOffice.org Configuration
This chapter decribes how the OpenOffice.org API offers access to the office configuration
options that is found in the Tools Options dialog.

OfficeBean
This chapter describes how the OfficeBean Java Bean component allows the developer to inte-
grate office functionality in Java applications.

1.3 OpenOffice.org Version History

OpenOffice.org exists in two versions www.openoffice.org
OpenOffice.org - an open source edition
StarOffice and StarSuite - "branded" editions derived from OpenOffice.org

In 2000, Sun Microsystems released the source code of their current developer version of StarOffice
on www.openoffice.org, and made the ongoing development process public. Sun’s development
team, which developed StarOffice, continued its work on www.openoffice.org, and developers from
all over the world joined them to port, translate, repair bugs and discuss future plans. StarOffice
6.0 and OpenOffice.org 1.0, which were released in spring 2002, share the same code base.

1.4 Related documentation

The api and udk projects on www.openoffice.org have related documentation, examples and FAQs
(frequently asked questions) on the OpenOffice.org API. Most important are probably the refer-
ences, you can find them at api.openoffice.org or udk.openoffice.org.

The API Reference covers the programmable features of OpenOffice.org.
The Java Reference describes the features of the Java UNO runtime environment.

The C++ Reference is about the C++ language binding.

OpenOffice.org 2.3 Developer's Guide « June 2007

1.5 Conventions

This book uses the following formatting conventions:

Bold refers to the keys on the keyboard or elements of a user interface, such as the OK button
or File menu.

Italics are used for emphasis and to signify the first use of a term. Italics are also used for web
sites, file and directory names and email addresses.

Courier New is used in all Code Listings and for everything that is typed when programming.

1.6 Acknowledgments

A publication like this can never be the work of a single person it is the result of tremendous
team effort. Of course, the OpenOffice.org/StarOffice development team played the most impor-
tant role by creating the API in the first place. The knowledge and experience of this team will be
documented here. Furthermore, there were several devoted individuals who contributed to
making this documentation reality.

First of all, we would like to thank Ralf Kuhnert and Dietrich Schulten. Using their technical exper-
tise and articulate mode of expression, they accomplished the challenging task of gathering the
wealth of API knowledge from the minds of the developers and transforming it into an under-
standable document.

Many reviewers were involved in the creation of this documentation. Special thanks go to Michael
H nnig who was one of the few who reviewed almost every single word. His input also played a
decisive role in how the documentation was structured. A big thank you also goes to Diane O'Brien
for taking on the daunting task of reviewing the final draft and providing us with extensive feed-
back at such short notice.

When looking at the diagrams and graphics, it is clear that a creative person with the right touch
for design and aesthetics was involved. Many thanks, therefore, are due Stella Schulze who re-
drew all of the diagrams and graphics from the originals supplied by various developers. We also
thank Svante Schubert who converted the original XML file format into HTML pages and was
most patient with us in spite of our demands and changes. Special thanks also to] rg Heilig, who
made this whole project possible.

] rgen would like to thank G tz Wohlberg for all his help in getting the right people involved and
making sure things ran smoothly.

G tz would like to thank] rgen Schmidt for his never-ending energy to hold everything together
and for pushing the contributors in the right direction. He can be considered as the heart of the
opus because of his guidance and endurance throughout the entire project.

We would like to take this opportunity to thank all these people and anyone else we forgot! for
their support.

] rgen Schmidt, G tz Wohlberg

31

First Steps

This chapter shows you the first steps when using the OpenOffice.org API. Following these steps is
essential to understand and use the chapters about OpenOffice.org documents such as 8 Text Docu-
ments, 9 Spreadsheet Documents and 10 Drawing. After you have successfully done the first steps,
you can go directly to the other chapters of this manual.

The focus of the first steps will be Java, but other languages are covered as well. If you want to use
OpenOffice.org Basic afterwards, please refer to the chapters 12.1 OpenOffice.org Basic and Dialogs -
First Steps with OpenOffice.org Basic and 3.4.3 Professional UNO - UNO Language Bindings -
OpenOffice.org Basic. The usage of C++ is described in 3.4.2 Professional UNO - UNO Language Bind-
ings - C++ Language Binding.

2.1 Programming with UNO

UNO (pronounced [ju:nou]) stands for Universal Network Objects and is the base component
technology for OpenOffice.org. You can utilize and write components that interact across
languages, component technologies, computer platforms, and networks. Currently, UNO is avail-
able on Linux, Solaris, Windows, Power PC, FreeBSD and Mac OS X. Other ports are still being
developed at OpenOffice.org. The supported programming languages are Java, C++ and
OpenOffice.org Basic. As well, UNO is available through the component technology Microsoft
COM for many other languages. On OpenOffice.org there is also a language binding for Python
available.

With OpenOffice.org 2.0, UNO is also programmable with .NET languages using the new
Common Language Infrastructure binding. In addition, the new scripting framework offers the use
of the API through several scripting languages, such as Javascript or Beanshell. See 19 Scripting
Framework for more details.

UNO is used to access OpenOffice.org, using its Application Programming Interface (API). The
OpenOffice.org API is the comprehensive specification that describes the programmable features
of OpenOffice.org.

2.2 Fields of Application for UNO

You can connect to a local or remote instance of OpenOffice.org from C++, Java and COM/DCOM.
C++ and Java Desktop applications, Java servlets, Java Server Pages, JScript and VBScript, and
languages, such as Delphi, Visual Basic and many others can use OpenOffice.org to work with
Office documents.

It is possible to develop UNO Components in C++ or Java that can be instantiated by the office
process and add new capabilities to OpenOffice.org. For example, you can write Chart Add-ins or

33

Calc Add-ins, Add-ons, linguistic extensions, new file filters, database drivers. You can even write
complete applications, such as a groupware client.

UNO components, as Java Beans, integrate with Java IDEs (Integrated Development Environment)
to give easy access to OpenOffice.org. Currently, a set of such components is under development
that will allow editing OpenOffice.org documents in Java Frames.

OpenOffice.org Basic cooperates with UNO, so that UNO programs can be directly written in
OpenOffice.org. With this method, you supply your own office solutions and wizards based on an
event-driven dialog environment.

The OpenOffice.org database engine and the data aware forms open another wide area of opportu-
nities for database driven solutions.

2.3 Getting Started

A number of files and installation sets are required before beginning with the OpenOffice.org AP

2.3.1 Required Files

These files are required for any of the languages you use.

OpenOffice.org Installation
Install the latest version of OpenOffice.org or StarOffice /StarSuite.

You can download OpenOffice.org from www.openoffice.org. StarOffice can be obtained from
Sun Microsystems or through your distributors.

API Reference
The OpenOffice.org API reference is part of the Software Development Kit and provides
detailed information about OpenOffice.org objects. The latest version can be found on, or
downloaded from, the documents section at api.openoffice.org.

2.3.2 Installation Sets

The following installation sets are necessary to develop OpenOffice.org API applications with Java.
This chapter describes how to set up a Java IDE for the OpenOffice.org APIL

JDK 1.3.1 or later
Java applications for OpenOffice.org require the Java Development Kit 1.3.1 or later. Download
and install a JDK from java.sun.com. To get all features, Java 1.4.1_01 is required. The recom-
mendation is to use always the latest Java version, because of important bug fixes.

Java IDE
Download an Integrated Development Environment (IDE), such as NetBeans from
www.netbeans.org or the Sun™ One Java Studio from Sun Microsystems. Other IDEs can be
used, but NetBeans/Sun One Java Studio offers the best integration. The integration of
OpenOffice.org with IDEs such as NetBeans is an ongoing effort. Check the files section of
api.openoffice.org for the latest information about NetBeans and other IDEs.

34 OpenOffice.org 2.3 Developer's Guide « June 2007

OpenOffice.org Software Development Kit (SDK)
Obtain the OpenOffice.org Software Development Kit (SDK) from www.openoffice.org. It
contains the build environment for the examples mentioned in this manual and reference docu-
mentation for the OpenOffice.org AP, for the Java UNO runtime, and the C++ APL. It also
offers more example sources. By means of the SDK you can use GNU make to build and run the
examples we mention here.

Unpack the SDK somewhere in your file system. The file index.html gives an overview of the
SDK. For detailed instructions which compilers to use and how to set up your development
environment, please refer to the SDK installation guide.

2.3.3 Configuration

Enable Java in OpenOffice.org

OpenOffice.org uses a Java Virtual Machine to instantiate components written in Java. From
OpenOffice.org 2.0 on, Java is found automatically during startup, or latest when Java function-
ality is required. If you prefer to preselect a JRE or JDK, or if no Java is found, you can configure
Java using the Tools Options dialog in OpenOffice.org and select the section OpenOffice.org
Java section. In older versions of OpenOffice.org you can also easily tell the office which JVM to
use: launch the jomsetup executable from the programs folder under the OpenOffice.org, select an
installed JRE or JDK and click OK. Close the OpenOffice.org including the Quickstarter in the
taskbar and restart OpenOffice.org. Furthermore, open the Tools - Options dialog in
OpenOffice.org, select the section OpenOffice.org - Security and make sure that the Java enable
option is checked.

Use Java UNO class files

Next, the OpenOffice.org class files must be made known to the Java IDE. For NetBeans these Java
UNO jar files must be mounted to a project. The following steps show how to create a new project
and mount class files in NetBeans from version 3.5.1.

1. From the Project menu, select Project Manager. Click the New... button in the Project Manager
window to create a new project. NetBeans uses your new project as the current project.

2. Activate the NetBeans Explorer window it should contain a Filesystems item (to display the
NetBeans Explorer window, click View - Explorer). Open its context menu and select Mount
Archive Files, navigate to the folder <OfficePath>/program/classes, choose at least jurt.jar,
unoil jar, ridl.jar and juh.jar in that directory and click Finish to mount the OpenOffice.org jars in
your project. As an alternative, you can also mount files using File - Mount Filesystem.

3. Finally you need a folder for the source files of your project. Choose Mount Local Directory
from the context menu of the Filesystems icon and use the file manager dialog to create a new
folder somewhere in your file system. Select it without opening it and click Finish to add it to
your project.

Add the API Reference to your IDE

We recommend to add the API and the Java UNO reference to your Java IDE to get online help for
the OpenOffice.org API and the Java UNO runtime. In NetBeans 3.4.1, follow these steps:

35

36

Open your project and choose the Tools Javadoc Manager menu. With the button Add
Folder... add the folders docs/common/ref and docs/java/ref of your SDK installation to use the API
and the Java UNO reference in your project.

You can now use Alt + F1 to view online help while the cursor is on a OpenOffice.org API or
Java UNO identifier in the source editor window.

2.3.4 First Contact

Getting Started

Since OpenOffice.org 2.0 it is very simple to get a working environment that offers a transparent
use of UNO functionality and of office functionality. The following demonstrates how to write a
small program that initializes UNO, which means that it internally connects to an office or starts a
new office process if necessary and tells you if it was able to get the office component context that
provides the office service manager object. Start the Java IDE or source editor, and enter the
following source code for the FirstUnoContact class.

To create and run the class in the NetBeans 3.5.1 IDE, use the following steps:

1. Add a main class to the project. In the NetBeans Explorer window, click the Project
<project_name> tab, right click the Project item, select Add New... to display the New Wizard,
open the Java Classes folder, highlight the template Main, and click Next.

2. In the Name field, enter FirstUnoContact’ as classname for the Main class and select the folder
that contains your project files. The FirstUnoContact is added to the default package of your
project. Click Finish to create the class.

3. Enter the source code shown below (FirstSteps/FirstUnoContact.java).

4. Add a blank ant script to the project. In the NetBeans Explorer window, click the Project
<project_name> tab, right click the Project item, select Add New to display the New Wizard,
open the Ant Build Scripts folder, highlight the template Blank Ant Project, and click Next.

5. In the Name field, enter ‘build_FirstUnoContact’ as script name for the ant build script and
select the folder that contains your project files. The build FirstUnoContact isadded to
your project. Click Finish to create the script.

6. Enter the script code shown below (FirstSteps/build_FirstUnoContact.xml).

7. Select and right click the build FirstUnoContact script, select Execute to build the
example project. Right click the build FirstUnoContact script again, select Run Target to
display more availble targets, select the run target to execute the example.

The FirstUnoContact example (FirstSteps/FirstUnoContact.java):
public class FirstUnoContact {

public static void main (String[] args) {
try {
// get the remote office component context
com.sun.star.uno.XComponentContext xContext =
com.sun.star.comp.helper.Bootstrap.bootstrap() ;

System.out.println("Connected to a running office ...");

com.sun.star.lang.XMultiComponentFactory xMCF =
xContext.getServiceManager () ;

String available = (xMCF != null ? "available" : "not available");
System.out.println("remote ServiceManager is " + available);
}

catch (java.lang.Exception e) {

OpenOffice.org 2.3 Developer's Guide « June 2007

e.printStackTrace () ;
}
finally {
System.exit (0) ;
}

}

The example ant build script (FirstSteps/build_FirstUnoContact.xml):

<?xml version="1.0" encoding="UTF-8"7?>
<project basedir="." default="all" name="FirstUnoContact">

<property environment="env"/>
<property name="OFFICE HOME" value="${env.OFFICE HOME}"/>
<property name="00_SDK_HOME" value="${env.00 SDK_HOME}"/>

<target name="init">
<property name="OUTDIR" value="${00_SDK_HOME}/WINExample.out/class/FirstUnoContact"/>
</target>

<path id="office.class.path">
<filelist dir="${OFFICE_HOME}/program/classes"
files="jurt.jar,unoil.jar,ridl.jar,juh.jar"/>
</path>

<fileset id="bootstrap.glue.code" dir="${00 SDK HOME}/classes">
<patternset>
<include name="com/sun/star/lib/loader/*.class"/>
<include name="win/unowinreg.dll"/>
</patternset>
</fileset>

<target name="compile" depends="init">
<mkdir dir="${OUTDIR}"/>

<javac debug="true" deprecation="true" destdir="${OUTDIR}" srcdir=".">
<classpath refid="office.class.path"/>
</javac>
</target>

<target name="jar" depends="init,compile">
<jar basedir="${OUTDIR}" compress="true"

jarfile="${OUTDIR}/FirstUnoContact.jar">

<exclude name="**/*_ java"/>

<exclude name="*.jar"/>

<fileset refid="bootstrap.glue.code"/>

<manifest>
<attribute name="Main-Class" value="com.sun.star.lib.loader.Loader"/>
<section name="com/sun/star/lib/loader/Loader.class">
<attribute name="Application-Class" value="FirstUnoContact"/>

</section>
</manifest>
</jar>
</target>

<target name="all" description="Build everything." depends="init,compile,jar">
<echo message="Application built. FirstUnoContact!"/>
</target>

<target name="run" description="Try running it." depends="init,all">
<java jar="${OUTDIR}/FirstUnoContact.jar" failonerror="true" fork="true">
</java>

</target>

<target name="clean" description="Clean all build products." depends="init">
<delete>
<fileset dir="${OUTDIR}">
<include name="**/*_ class"/>
</fileset>
</delete>
<delete file="${OUTDIR}/FirstUnoContact.jar"/>
</target>

</project>
For an example that connects to the office with C++, see chapter 3.4.2 Professional UNO - UNO

Language Bindings - C++ Language Binding. Accessing the office with OpenOffice.org Basic is
described in 12.1 OpenOffice.org Basic and Dialogs - First Steps with OpenOffice.org Basic.

The next section describes what happens during the connection between a Java program and
OpenOffice.org.

38

Service Managers

UNO introduces the concept of service managers, which can be considered as factories that create
services. For now, it is sufficient to see services as UNO objects that can be used to perform specific
tasks. Later on we will give a more precise definition for the term service.

For example, the following services are available:

com.sun.star.frame.Desktop
maintains loaded documents: is used to load documents, to get the current document, and
access all loaded documents

com.sun.star.configuration.ConfigurationProvider
yields access to the OpenOffice.org configuration, for instance the settings in the Tools -
Options dialog

com.sun.star.sdb. DatabaseContext
holds databases registered with OpenOffice.org

com.sun.star.system.SystemShellExecute
executes system commands or documents registered for an application on the current platform

com.sun.star.text.GlobalSettings
manages global view and print settings for text documents

Service
Manager

\

Service

<E___
<E___

<E_________.

Service Service

%

Service Service

Hllustration 2.1: Service manager

A service always exists in a component context, which consists of the service manager that created
the service and other data to be used by the service.

The FirstUnoContact class above is considered a client of the OpenOffice.org process,
OpenOffice.org is the server in this respect. The server has its own component context and its own
service manager, which can be accessed from client programs to use the office functionality. The
client program initializes UNO and gets the component context from the OpenOffice.org process.

OpenOffice.org 2.3 Developer's Guide « June 2007

Internally, this initialization process creates a local service manager, establishes a pipe connection
to a running OpenOffice.org process (if necessary a new process is started) and returns the remote
component context. In the first step this is the only thing you have to know. The
com.sun.star.comp.helper.Bootstrap.bootstrap() method initializes UNO and returns the remote
component context of a running OpenOffice.org process. You can find more details about boot-
strapping UNO, the opportunities of different connection types and how to establish a connection
to a UNO server process in the 3.3 Professional UNO - UNO Concepts.

After this first initialization step, you can use the method getServiceManager () from the compo-
nent context to get the remote service manager from the OpenOffice.org process, which offers you
access to the complete office functionality available through the APIL

Failed Connections
A remote connection can fail under certain conditions:

Client programs should be able to detect errors. For instance, sometimes the bridge might
become unavailable. Simple clients that connect to the office, perform a certain task and exit
afterwards should stop their work and inform the user if an error occurred.

Clients that are supposed to run over a long period of time should not assume that a reference
to an initial object will be valid over the whole runtime of the client. The client should resume
even if the connection goes down for some reason and comes back later on. When the connec-
tion fails, a robust, long running client should stop the current work, inform the user that the
connection is not available and release the references to the remote process. When the user tries
to repeat the last action, the client should try to rebuild the connection. Do not force the user to
restart your program just because the connection was temporarily unavailable.

When the bridge has become unavailable and access is tried, it throws a
com.sun.star.lang.DisposedException. Whenever you access remote references in your
program, catch this Exception in such a way that you set your remote references to null and inform
the user accordingly. If your client is designed to run for a longer period of time, be prepared to
get new remote references when you find that they are currently null.

A more sophisticated way to handle lost connections is be to register a listener at the underlying
bridge object. The chapter 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections
shows how to write a connection-aware client.

2.4 How to get Objects in OpenOffice.org

An object in our context is a software artifact that has methods you can call. Objects are required to
do something with OpenOffice.org. But where do you obtain them?

New objects
In general, new objects or objects which are necessary for a first access are created by service
managers in OpenOffice.org. In the FirstLoadComponent example, the remote service manager
creates the remote Desktop object, which handles application windows and loaded documents
in OpenOffice.org:

Object desktop = xRemoteServiceManager.createInstanceWithContext (
"com.sun.star.frame.Desktop", xRemoteContext);

39

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager

40

Document objects

Document objects represent the files that are opened with OpenOffice.org. They are created by
the Desktop object, which has a 1oadComponentFromURL () method for this purpose.

Objects that are provided by other objects

Objects can hand out other objects. There are two cases:

Features which are designed to be an integral part of the object that provides the feature can
be obtained by get methods in the OpenOffice.org API. It is common to get an object from a
get method. For instance, getSheets () is required for every Calc document, getText () is
essential for every Writer Document and getDrawpages () is an essential part of every Draw
document. After loading a document, these methods are used to get the Sheets, Text and
Drawpages object of the corresponding document. Object-specific get methods are an impor-
tant technique to get objects.

Features which are not considered integral for the architecture of an object are accessible
through a set of universal methods. In the OpenOffice.org API, these features are called
properties, and generic methods are used, such as getPropertyvalue (String proper-
tyName) to access them. In some cases such a non-integral feature is provided as an object,
therefore the method getPropertyvalue () can be another source for objects. For instance,
page styles for spreadsheets have the properties "RightPageHeaderContent" and "Left-
PageHeaderContent", that contain objects for the page header sections of a spreadsheet
document. The generic getPropertyValue () method can sometimes provide an object you
need.

Sets of objects

Objects can be elements in a set of similar objects. In sets, to access an object you need to know
how to get a particular element from the set. The OpenOffice.org API allows four ways to
provide an element in a set. The first three ways are objects with element access methods that
allow access by name, index, or enumeration. The fourth way is a sequence of elements which
has no access methods but can be used as an array directly. How these sets of elements are used
will be discussed later.

The designer of an object decides which of those opportunities to offer, based on special condi-
tions of the object, such as how it performs remotely or which access methods best work with
implementation.

2.5 Working with Objects

Working with OpenOftfice.org API objects involves the following:

First we will learn the UNO concepts of objects, interfaces, services, attributes, and properties,
and we will get acquainted with UNO’s method of using them.

After that, we will work with a OpenOffice.org document for the first time, and give some hints
for the usage of the most common types in OpenOffice.org APL

Finally we will introduce the common interfaces that allow you to work with text, tables and
drawings across all OpenOffice.org document types.

OpenOffice.org 2.3 Developer's Guide « June 2007

2.5.1 Objects, Interfaces, and Services

Objects

In UNO, an object is a software artifact that has methods that you can call and attributes that you
can get and set. Exactly what methods and attributes an object offers is specified by the set of inter-
faces it supports.

Interfaces

An interface specifies a set of attributes and methods that together define one single aspect of an
object. For instance, the interface com.sun.star.resource.XResourceBundle

module com { module sun { module star { module resource {
interface XResourceBundle: com::sun::star::conainer::XNameAccess {
[attribute] XResourceBundle Parent;
com: :sun::star::lang::Locale getLocale();
any getDirectElement ([in] string key);

bi
[I A

specifies the attribute Parent and the methods getLocale () and getDirectElement (). To allow
for reuse of such interface specifications, an interface can inherit one or more other interfaces (as,
for example, XResourceBundle inherits all the attributes and methods of
com.sun.star.container.XNameAccess). Multiple inheritance, the ability to inherit more than
one interface, is new in OpenOffice.org 2.0.

Strictly speaking, interface attributes are not needed in UNO. Each attribute could also be
expressed as a combination of one method to get the attribute s value, and another method to set it
(or just one method to get the value for a read-only attribute). However, there are at least two good
reasons for the inclusion of interface attributes in UNO: First, the need for such combinations of
getting and setting a value seems to be widespread enough to warrant extra support. Second, with
attributes, a designer of an interface can better express nuances among the different features of an
object. Attributes can be used for those features that are not considered integral or structural parts
of an object, while explicit methods are reserved to access the core features.

Historically, a UNO object typically supported a set of many independent interfaces, corre-
sponding to its many different aspects. With multiple-inheritance interfaces, there is less need for
this, as an object may now support just one interface that inherits from all the other interfaces that
make up the object s various aspects.

Services

Historically, the term service has been used with an unclear meaning in UNO. Starting with
OpenOffice.org 2.0, the underlying concepts have been made cleaner. Unfortunately, this leaves
two different meanings for the term service within UNO. In the following, we will use the term

new-style service to denote an entity that conforms to the clarified, OpenOffice.org-2.0 service
concept, while we use old-style service to denote an entity that only conforms to the historical,
more vague concept. To make matters even more complicated, the term service is often used
with still different meanings in contexts outside UNO.

Although technically there should no longer be any need for old-style services, the OpenOffice.org
API still uses them extensively, to remain backwards compatible. Therefore, be prepared to
encounter uses of both service concepts in parallel when working with the OpenOffice.org APL

A new-style service is of the form

41

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XResourceBundle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XResourceBundle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XResourceBundle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XResourceBundle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XResourceBundle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/resource/XResourceBundle.html

42

module com { module sun { module star { module bridge {

service UnoUrlResolver: XUnoUrlResolver;
[N AR A
and specifies that objects that support a certain interface (for example,
com.sun.star.bridge.XUnoUrlResolver) will be available under a certain service name (e.g.,
"com.sun.star.bridge.UnoUrlResolver") at a component context s service manager. (Formally,
new-style services are called single-interface based services.)

The various UNO language bindings offer special constructs to easily obtain instances of such
new-style services, given a suitable component context; see 3.4.1 Professional UNO - UNO Language
Bindings - Java Language Binding - Type Mappings - Mapping of Services and 3.4.2 Professional UNO -
UNO Language Bindings - C++ Language Binding - Type Mappings - Mapping of Services.

An old-style service (formally called an accumulation-based service) is of the form

module com { module sun { module star { module frame ({
service Desktop {

service Frame;

interface XDesktop;

interface XComponentLoader;

interface com::sun::star::document: :XEventBroadcaster;

} biobiobi
and is used to specify any of the following:

- The general contract is, that if an object is documented to support a certain old-style service,
then you can expect that object to support all interfaces exported by the service itself and any
inherited services. For example, the method com.sun.star.frame.XFrames:gueryFrames
returns a sequence of objects that should all support the old-style service
com.sun.star.frame.Frame, and thus all the interfaces exported by Frame.

- Additionally, an old-style service may specify one or more properties, as in

module com { module sun { module star { module frame ({
service Frame {

interface com::sun::star::frame: :XFrame;

interface com::sun::star::frame::XDispatchProvider;

/o

[property] string Title;

[property, optional] XDispatchRecorderSupplier RecorderSupplier;

7y
b
biode ook
Properties, which are explained in detail in the following section, are similar to interface attri-
butes, in that they describe additional features of an object. The main difference is that interface
attributes can be accessed directly, while the properties of an old-style service are typically
accessed via generic interfaces like com. sun.star.beans.XPropertyset. Often, interface attri-
butes are used to represent integral features of an object, while properties represent additional,

more volatile features.

- Some old-style services are intended to be available at a component context s service manager.
For example, the service com.sun.star. frame.Desktop can be instantiated at a component
context s service manager under its service name "com. sun.star.frame.Desktop". (The
problem is that you cannot tell whether a given old-style service is intended to be available at a
component context; using a new-style service instead makes that intent explicit.)

- Other old-style services are designed as generic super-services that are inherited by other
services. For example, the service com.sun.star.document.OfficeDocument serves as a
generic base for all different sorts of concrete document services, like
com.sun.star.text.TextDocument and com.sun.star.drawing.DrawingDocument.
(Multiple-inheritance interfaces are now the preferred mechanism to express such generic base
services.)

- Yet other old-style services only list properties, and do not export any interfaces at all. Instead
of specifying the interfaces supported by certain objects, as the other kinds of old-style services

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html#queryFrames
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html#queryFrames
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrames.html#queryFrames
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html

do, such services are used to document a set of related properties. For example, the service
com.sun.star.document.MediaDescriptor lists all the properties that can be passed to
com.sun.star.frame.XComponentloader:loadComponentFromURL.

A property is a feature of an object which is typically not considered an integral or structural part of
the object and therefore is handled through generic getPropertyvalue () /setPropertyValue ()
methods instead of specialized get methods, such as getprinter (). Old-style services offer a
special syntax to list all the properties of an object. An object containing properties only has to
support the com.sun.star.beans.XPropertySet interface to be prepared to handle all kinds of
properties. Typical examples are properties for character or paragraph formatting. With properties,
you can set multiple features of an object through a single call to setPropertyvalues (), which
greatly improves the remote performance. For instance, paragraphs support the setProperty-
values () method through their com.sun.star.beans.xXMultiPropertySet interface.

2.5.2 Using Services

The concepts of interfaces and services were introduced for the following reasons:

Interfaces and services separate specification from implementation
The specification of an interface or service is abstract, that is, it does not define how objects
supporting a certain functionality do this internally. Through the abstract specification of the
OpenOffice.org AP], it is possible to pull the implementation out from under the API and install
a different implementation if required.

Service names allow to create instances by specification name, not by class names
In Java or C++ you use the new operator to create a class instance. This approach is restricted:
the class you get is hard-coded. You cannot later on exchange it by another class without
editing the code. The concept of services solves this. The central object factory in
OpenOffice.org, the global service manager, is asked to create an object that can be used for a
certain purpose without defining its internal implementation. This is possible, because a service
can be ordered from the factory by its service name and the factory decides which service imple-
mentation it returns. Which implementation you get makes no difference, you only use the
well-defined interface of the service.

Multiple-inheritance interfaces make fine-grained interfaces manageable
Abstract interfaces are more reusable if they are fine-grained, i.e., if they are small and describe
only one aspect of an object, not several aspects. But then you need many of them to describe a
useful object. Multiple-inheritance interfaces allow to have fine-grained interfaces on the one
hand and to manage them easily by forging them into a collection. Since it is quite probable that
objects in an office environment will share many aspects, this fine granularity allows the inter-
faces to be reused and thus to get objects that behave consistently. For instance, it was possible
to realize a unified way to handle text, no matter if you are dealing with body text, text frames,
header or footer text, footnotes, table cells or text in drawing shapes. It was not necessary to
define separate interfaces for all of these purposes.

Let us consider the old-style service com.sun.star. text.TextDocument in UML notation. The
UML chart shown in Illustration 2.2 depicts the mandatory interfaces of a TextDocument service.
These interfaces express the basic aspects of a text document in OpenOffice.org. It contains text, it
is searchable and refreshable. It is a model with URL and controller, and it is modifiable, printable
and storable. The UML chart shows how this is specified in the APL

43

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html#loadComponentFromURL
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html#loadComponentFromURL
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html#loadComponentFromURL
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html

44

com.sun.star.view.XPrintable

getPrinter
setPrinter
print

com.sun.star.frame.XStorable

hasLocation
getlocation
isReadOnly
store
storeAsUrl

storeToUrl
com.sun.star.document.

OfficeDocument O com.sun.star.frame.XModel

<<service>>

attachResource
getURL

getArgs
connectController
disconnectController
lockControllers
unlockControllers
hasControllersLocked
setCurrentController
getCurrentController

O com.sun.star.util.XModifiable

isModified
setModified

o com.sun.star.text.XTextDocument

getText
reformat

com.sun.star.util.XSearchable

com.sun.star.text.

TextDocument createSearchDescriptor
findAll

findFirst
findNext

<<service>>

O com.sun.star.util.XRefreshable

refresh
addRefreshListener
removeRefreshListener

Illustration 2.2: Text Document

On the left of Illustration 2.2, the services com.sun.star.text.TextDocument and

com.sun.star.document.OfficeDocument are shown. Every TextDocument must include these

services by definition.

On the right of Illustration 2.2, you find the interfaces, that the services must export. Their method
compartments list the methods contained in the various interfaces. In the OpenOffice.org AP], all
interface names have to start with an X to be distinguishable from the names of other entities.

Every TextDocument object must support three interfaces: XTextDocument, XSearchable, and
XRefreshable. In addition, because a TextDocument is always an 0f ficeDocument, it must also
support the interfaces XPrintable, XStorable, XModifiable and XModel. The methods contained

in these interfaces cover these aspects: printing, storing, modification and model handling.

OpenOffice.org 2.3 Developer's Guide * June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html

Note that the interfaces shown in Illustration 2.2 are only the mandatory interfaces of a TextDocu-
ment. A TextDocument has optional properties and interfaces, among them the properties Charac-
terCount, ParagraphCount and WordCount and the XPropertySet interface which must be
supported if properties are present at all. The current implementation of the TextDocument service
in OpenOffice.org does not only support these interfaces, but all optional interfaces as well. The
usage of a TextDocument is described thoroughly in 8 Text Documents.

Using Interfaces

The fact that every UNO object must be accessed through its interfaces has an effect in languages
like Java and C++, where the compiler needs the correct type of an object reference before you can
call a method from it. In Java or C++, you normally just cast an object before you access an inter-
face it implements. When working with UNO objects this is different: You must ask the UNO envi-
ronment to get the appropriate reference for you whenever you want to access methods of an inter-
face which your object supports, but your compiler does not yet know about. Only then you can
cast it safely.

The Java UNO environment has a method queryInterface () for this purpose. It looks compli-
cated at first sight, but once you understand that queryInterface () is about safe casting of UNO
types across process boundaries, you will soon get used to it. Take a look to the second example
FirstLoadComponent (FirstSteps/FirstLoadComponent.java) where a new Desktop object is
created and afterwards the queryInterface () method is used to get the XComponentlLoader inter-
face.

Object desktop = xRemoteServiceManager.createInstanceWithContext (
"com.sun.star.frame.Desktop", xRemoteContext) ;

XComponentLoader xComponentLoader = (XComponentLoader)

UnoRuntime.queryInterface (XComponentLoader.class, desktop);
(0]
We asked the service manager to create a com.sun.star. frame.Desktop using its factory method
createInstanceWithContext (). This method is defined to return a Java Object type, which
should not surprise you after all the factory must be able to return any type:

java.lang.Object createInstanceWithContext (String serviceName, XComponentContext context)
The object we receive isa com.sun.star. frame.Desktop service.

The following figure is a simplified specification in UML notation showing the relation to the
com.sun.star.frame.Frame service and the supported interfaces.The point is, while we know that
the object we ordered at the factory is a DesktopUnoUrlResolver and exports among other inter-
faces the interface XComponentLoader, the compiler does not. Therefore, we have to use the UNO
runtime environment to ask or query for the interface XxComponentLoader, since we want to use the
loadComponentFromURL () method on this interface. The method queryInterface () makes sure
we get a reference that can be cast to the needed interface type, no matter if the target object is a
local or a remote object. There are two queryInterface definitions in the Java UNO language
binding:

java.lang.Object UnoRuntime.queryInterface (java.lang.Class targetInterface, Object sourceObject)
java.lang.Object UnoRuntime.queryInterface (com.sun.star.uno.Type targetInterface, Object sourceObject)
Since UnoRuntime.queryInterface () is specified to return a java.lang.Object just like the factory
method createInstanceWithContext (), we still must explicitly cast our interface reference to the
needed type. The difference is that after queryInterface () we can safely cast the object to our
interface type and, most important, that the reference will now work even with an object in another
process. Here is the queryInterface () call, explained step by step:

XComponentLoader xComponentLoader = (XComponentLoader)
UnoRuntime.queryInterface (XComponentLoader.class, desktop);

45

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface

46

XComponentLoader is the interface we want to use, so we define a XComponentLoader variable
named xComponentLaoder (lower x) to store the interface we expect from queryInterface.

Then we query our desktop object for the xComponentLoader interface, passing in XComponent-
Loader.class as target interface and desktop as source object. Finally we cast the outcome to
XComponentLoader and assign the resulting reference to our variable xComponentLoader.

If the source object does not support the interface we are querying for, queryInterface () will
return null.

In Java, this call to queryInterface () is necessary whenever you have a reference to an object
which is known to support an interface that you need, but you do not have the proper reference
type yet. Fortunately, you are not only allowed to queryInterface () from java.lang.Object
source types, but you may also query an interface from another interface reference, like this:

// loading a blank spreadsheet document gives us its XComponent interface:
XComponent xComponent = xComponentLoader.loadComponentFromURL (
"private:factory/scalc", " blank", 0, loadProps);

// now we query the interface XSpreadsheetDocument from xComponent

XSpreadsheetDocument xSpreadsheetDocument = (XSpreadsheetDocument)UnoRuntime.queryInterface (
XSpreadsheetDocument.class, xComponent) ;

Furthermore, if a method is defined in such a way that it already returns an interface type, you do

not need to query the interface, but you can use its methods right away. In the snippet above, the

method loadComponentFromURL is specified to return an com.sun.star.lang.XComponent inter-

face, so you may call the XComponent methods addEventListener () and

removeEventListener () directly at the xComponent variable, if you want to be notified that the

document is being closed.

The corresponding step in C++ is done by a Reference<> template that takes the source instance
as parameter:

// instantiate a sample service with the servicemanager.
Reference< XInterface > rInstance =
rServiceManager->createInstanceWithContext (
OUString: :createFromAscii ("com.sun.star.frame.Desktop"),
rComponentContext);

// Query for the XComponentLoader interface
Reference< XComponentLoader > rComponentLoader (rInstance, UNO_QUERY);

In OpenOffice.org Basic, querying for interfaces is not necessary, the Basic runtime engine takes
care about that internally.

With the proliferation of multiple-inheritance interfaces in the OpenOffice.org API, there will be
less of a demand to explicitly query for specific interfaces in Java or C++. For example, with the
hypothetical interfaces

interface XBasel {
void funl () ;

}i

interface XBase2 ({
void fun2();

}i

interface XBoth { // inherits from both XBasel and XBase2
interface XBasel;
interface XBase2;

}i

interface XFactory {
XBoth getBoth () ;

}i

you can directly call both funl () and fun2 () on a reference obtained through
XFactory.getBoth (), without querying for either xBasel or XBase2.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

Using Properties

An object must offer its properties through interfaces that allow you to work with properties. The
most basic form of these interfaces is the interface com.sun.star.beans.XPropertySet. There are
other interfaces for properties, such as com.sun.star.beans.XMultiPropertySet, that gets and
sets a multitude of properties with a single method call. The xPropertySet is always supported
when properties are present in a service.

In XPropertysSet, two methods carry out the property access, which are defined in Java as follows:

void setPropertyValue (String propertyName, Object propertyValue)
Object getPropertyValue (String propertyName)

In the FirstLoadComponent example, the XPropertyset interface was used to set the CellStyle
property at a cell object. The cell object was a com. sun.star.sheet.SheetCell and therefore
supports also the com. sun.star.table.CellProperties service which had a property cell-
Style. The following code explains how this property was set:

// query the XPropertySet interface from cell object
XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface (XPropertySet.class, xCell);

// set the CellStyle property
xCellProps.setPropertyValue ("CellStyle", "Result");

You are now ready to start working with a OpenOffice.org document.

2.5.3 Example: Working with a Spreadsheet Document

In this example, we will ask the remote service manager to give us the remote Desktop object and
use its loadComponentFromURL () method to create a new spreadsheet document. From the docu-
ment we get its sheets container where we insert and access a new sheet by name. In the new sheet,
we enter values into A1l and A2 and summarize them in A3. The cell style of the summarizing cell
gets the cell style Result, so that it appears in italics, bold and underlined. Finally, we make our
new sheet the active sheet, so that the user can see it.

Add these import lines to the FirstConnection example above:
(FirstSteps/FirstLoadComponent.java)

import com.sun.star.beans.PropertyValue;

import com.sun.star.lang.XComponent;

import com.sun.star.sheet.XSpreadsheetDocument;
import com.sun.star.sheet.XSpreadsheets;

import com.sun.star.sheet.XSpreadsheet;

import com.sun.star.sheet.XSpreadsheetView;
import com.sun.star.table.XCell;

import com.sun.star.frame.XModel;

import com.sun.star.frame.XController;

import com.sun.star.frame.XComponentLoader;

Edit the useConnection method as follows:

protected void useConnection () throws java.lang.Exception {
try {
// get the remote office component context
xRemoteContext = com.sun.star.comp.helper.Bootstrap.bootstrap () ;
System.out.println ("Connected to a running office ...");

xRemoteServiceManager = xRemoteContext.getServiceManager () ;
}
catch(Exception e) {

e.printStackTrace () ;

System.exit (1) ;
}

try {
// get the Desktop, we need its XComponentLoader interface to load a new document

Object desktop = xRemoteServiceManager.createInstanceWithContext (
"com.sun.star.frame.Desktop", xRemoteContext);

a7

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

48

// query the XComponentLoader interface from the desktop
XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface (
XComponentLoader.class, desktop):;

// create empty array of PropertyValue structs, needed for loadComponentFromURL
PropertyValue[] loadProps = new PropertyValue[0];

// load new calc file
XComponent xSpreadsheetComponent = xComponentLoader.loadComponentFromURL (
"private:factory/scalc", " blank", 0, loadProps);

// query its XSpreadsheetDocument interface, we want to use getSheets()
XSpreadsheetDocument xSpreadsheetDocument = (XSpreadsheetDocument)UnoRuntime.queryInterface (
XSpreadsheetDocument.class, xSpreadsheetComponent) ;

// use getSheets to get spreadsheets container
XSpreadsheets xSpreadsheets = xSpreadsheetDocument.getSheets () ;

//insert new sheet at position 0 and get it by name, then query its XSpreadsheet interface
xSpreadsheets.insertNewByName ("MySheet", (short)O0);
Object sheet = xSpreadsheets.getByName ("MySheet") ;
XSpreadsheet xSpreadsheet = (XSpreadsheet)UnoRuntime.queryInterface (
XSpreadsheet.class, sheet);

// use XSpreadsheet interface to get the cell Al at position 0,0 and enter 21 as value
XCell xCell = xSpreadsheet.getCellByPosition (0, 0);
xCell.setValue (21) ;

// enter another value into the cell A2 at position 0,1
xCell = xSpreadsheet.getCellByPosition (0, 1);
xCell.setValue (21) ;

// sum up the two cells
xCell = xSpreadsheet.getCellByPosition (0, 2);
xCell.setFormula ("=sum(A1:A2)");

// we want to access the cell property CellStyle, so query the cell's XPropertySet interface
XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xCell);

// assign the cell style "Result" to our formula, which is available out of the box
xCellProps.setPropertyValue ("CellStyle", "Result");

// we want to make our new sheet the current sheet, so we need to ask the model
// for the controller: first query the XModel interface from our spreadsheet component
XModel xSpreadsheetModel = (XModel)UnoRuntime.queryInterface (

XModel.class, xSpreadsheetComponent) ;

// then get the current controller from the model
XController xSpreadsheetController = xSpreadsheetModel.getCurrentController () ;

// get the XSpreadsheetView interface from the controller, we want to call its method

// setActiveSheet

XSpreadsheetView xSpreadsheetView = (XSpreadsheetView)UnoRuntime.queryInterface (
XSpreadsheetView.class, xSpreadsheetController) ;

// make our newly inserted sheet the active sheet using setActiveSheet
xSpreadsheetView.setActiveSheet (xSpreadsheet) ;

}

catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
xRemoteContext = null;
throw e;

}

Alternatively, you can add FirstLoadComponent.java from the samples directory to your current
project, it contains the changes shown above.

2.5.4 Common Types

Until now, literals and common Java types for method parameters and return values have been
used as if the OpenOffice.org API was made for Java. However, it is important to understand that
UNO is designed to be language independent and therefore has its own set of types which have to
be mapped to the proper types for your language binding. The type mappings are briefly
described in this section. Refer to 3 Professional UNO for detailed information about type

mappings.

OpenOffice.org 2.3 Developer's Guide « June 2007

Basic Types

The basic UNO types (where the term basic has nothing to do with OpenOffice.org Basic) occur
as members of structs, as method return types or method parameters. The following table shows
the basic UNO types and, if available, their exact mappings to Java, C++, and OpenOffice.org Basic

types.

UNO Type description Java C++ Basic
empty type, used only as

void method return typeand void void -
in any

boolean Boolean type; true and boolean sal Bool Boolean
false -

byte signed 8-bit integer type byte sal _Int8 Integer

short signed 16-bit integer type short sal Intlé6 Integer

unsigned unsigned 16-bit integer _ sal uIntlé _

short type (deprecated) -

long signed 32-bit integer type | int sal_Int32 Long

unsigned unsigned 32-bit integer _ sal uInt3? B

long type (deprecated) -

hyper signed 64-bit integer type ' long sal Int64 -

unsigned unsigned 64-bit integer sal ulntéd _

hyper type (deprecated) -

float H.SC 60559. smgl(? precis float float (if appropriate) Single
sion floating point type

double H.EC 60559. doub.le PTeC™ gouble double (if appropriate) Double
sion floating point type

16-bit Unicode character
char type (more precisely: char sal Unicode -
UTEF-16 code units)-

There are special conditions for types that do not have an exact mapping in this table. Check for
details about these types in the corresponding sections about type mappings in 3.4 Professional
UNO - UNO Language Bindings.

Strings

UNO considers strings to be simple types, but since they need special treatment in some environ-
ments, we discuss them separately here.

UNO Description Java C++ Basic

Unicode string type
string (more precisely: strings
of Unicode scalar values)

java.lang.-

String rtl::0UString String

In Java, use UNO strings as if they were native java.lang.String objects.

In C++, native char strings must be converted to UNO Unicode strings by means of SAL conver-
sion functions, usually the function createFromaAscii () inthe rtl::0USstring class:

//C++

49

50

static OUString createFromAscii(const sal_ Char * value) throw();

In Basic, Basic strings are mapped to UNO strings transparently.

Enum Types and Groups of Constants

The OpenOffice.org API uses many enumeration types (called enums) and groups of constants
(called constant groups). Enums are used to list every plausible value in a certain context. The
constant groups define possible values for properties, parameters, return values and struct
members.

For example, there is an enum com.sun.star.table.CellVertJustify that describes the possible
values for the vertical adjustment of table cell content. The vertical adjustment of table cells is
determined by their property com.sun.star.table.CellProperties:VertJustify. The possible
values for this property are, according to Cel1lvertJustify, the values STANDARD, TOP, CENTER and
BOTTOM.

// adjust a cell content to the upper cell border

// The service com.sun.star.table.Cell includes the service com.sun.star.table.CellProperties
// and therefore has a property VertJustify that controls the vertical cell adjustment

// we have to use the XPropertySet interface of our Cell to set it

xCellProps.setPropertyValue ("VertJustify", com.sun.star.table.CellVertJustify.TOP) ;
OpenOffice.org Basic understands enumeration types and constant groups. Their usage is straight-
forward:

'OpenOffice.org Basic
oCellProps.VertJustify = com.sun.star.table.CellVertJustify.TOP

In C++ enums and constant groups are used with the scope operator ::
//C++

rCellProps->setPropertyValue (OUString: :createFromAscii ("VertJustify"),
::com::sun::star::table::CellVertJustify.TOP) ;

2.5.5 Struct

Structs in the OpenOffice.org API are used to create compounds of other UNO types. They corre-
spond to C structs or Java classes consisting of public member variables only.

While structs do not encapsulate data, they are easier to transport as a whole, instead of marshal-
ling get () and set () calls back and forth. In particular, this has advantages for remote communi-
cation.

You gain access to struct members through the . (dot) operator as in
aProperty.Name = "ReadOnly";
In Java, C++ und OpenOffice.org Basic, the keyword new instantiates structs. In OLE automation,

use com.sun.star.reflection.CoreReflection to geta UNO struct. Do not use the service
manager to create structs.

//In Java:
com.sun.star.beans.PropertyValue aProperty = new com.sun.star.beans.PropertyValue();

'In StarBasic
Dim aProperty as new com.sun.star.beans.PropertyValue

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html#VertJustify
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html#VertJustify
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html#VertJustify
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellVertJustify.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellVertJustify.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellVertJustify.html

2.5.6 Any

The OpenOffice.org API frequently uses an any type, which is the counterpart of the variant type
known from other environments. The any type holds one arbitrary UNO type. The any type is
especially used in generic UNO interfaces.

Examples for the occurrence of any are the method parameters and return values of the following,
frequently used methods:

Interface returning an any type taking an any type
XPropertySet any getPropertyValue (string void setPropertyValue (any value)
propertyName)
XNameContainer any getByName (string name) void void
replaceByName (string insertByName (string
name, any element) name, any element)
XIndexContainer any getByIndex (long index) void void
replaceByIndex (long insertByIndex (long
index, any element) index, any element)
XEnumeration any nextElement () -

Furthermore, the any type occurs in the com. sun.star.beans.PropertyValue struct.

com.sun.star.beans.
PropertyValue

<<struct>>

string Name
any Value

Hllustration 2.3:
PropertyValue

This struct has two member variables, Name and value, and is ubiquitous in sets of Property-
Value structs, where every PropertyValue is a name-value pair that describes a property by name
and value. If you need to set the value of such a PropertyVvalue struct, you must assign an any
type, and you must be able to interpret the contained any, if you are reading from a property-
Value. It depends on your language how this is done.

In Java, the any type is mapped to java.lang.Object, but there is also a special Java class
com.sun.star.uno.Any, mainly used in those cases where a plain 0bject would be ambiguous.
There are two simple rules of thumb to follow:

When you are supposed to pass in an any value, always pass in a java.lang.Object or a Java
UNO object.

For instance, if you use setPropertyValue () to set a property that has a non-interface type in the
target object, you must pass in a java.lang.Object for the new value. If the new value is of a
primitive type in Java, use the corresponding Object type for the primitive type:

xCellProps.setPropertyValue ("CharWeight", new Double (200.0)) ;

Another example would be a Propertyvalue struct you want to use for loadComponentFromURL:

com.sun.star.beans.PropertyValue aProperty = new com.sun.star.beans.PropertyValue() ;
aProperty.Name = "ReadOnly";
aProperty.Value Boolean.TRUE;

When you receive an any instance, always use the com. sun.star.uno.AnyConverter to retrieve its
value.

51

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html

The AnyConverter requires a closer look. For instance, if you want to get a property which
contains a primitive Java type, you must be aware that getPropertyvalue () returns a
java.lang.Object containing your primitive type wrapped in an any value. The
com.sun.star.uno.AnyConverter is a converter for such objects. Actually it can do more than
just conversion, you can find its specification in the Java UNO reference. The following list sums
up the conversion functions in the AnyConverter:

static java.lang.Object toArray(java.lang.Object object)

static boolean toBoolean (java.lang.Object object)

static byte toByte(java.lang.Object object)

static char toChar(java.lang.Object object)

static double toDouble (java.lang.Object object)

static float toFloat(java.lang.Object object)

static int toInt(java.lang.Object object)

static long toLong(java.lang.Object object)

static java.lang.Object toObject(Class clazz, java.lang.Object object)
static java.lang.Object toObject (Type type, Jjava.lang.Object object)
static short toShort(java.lang.Object object)

static java.lang.String toString(java.lang.Object object)

static Type toType (java.lang.Object object)

static int toUnsignedInt(java.lang.Object object)

static long toUnsignedLong(java.lang.Object object)

static short toUnsignedShort(java.lang.Object object)

Its usage is straightforward:

import com.sun.star.uno.AnyConverter;
long cellColor = AnyConverter.tolLong (xCellProps.getPropertyValue ("CharColor")) ;

For convenience, for interface types you can directly use UnoRuntime.queryInterface () without
first calling AnyConverter.getObject ():

import com.sun.star.uno.AnyConverter;

import com.sun.star.uno.UnoRuntime;

Object ranges = xSpreadsheet.getPropertyValue ("NamedRanges") ;

XNamedRanges rangesl (XNamedRanges) UnoRuntime.queryInterface (
XNamedRanges.class, AnyConverter.toObject (XNamedRanges.class, r));

XNamedRanges ranges?2 (XNamedRanges) UnoRuntime.queryInterface (
XNamedRanges.class, r);

In OpenOffice.org Basic, the any type becomes a Variant:

'OpenOffice.org Basic
Dim cellColor as Variant
cellColor = oCellProps.CharColor

In C++, there are special operators for the any type:

//C++ has >>= and <<= for Any (the pointed brackets are always left)

sal Int32 cellColor;

Any any;

any = rCellProps->getPropertyValue (OUString: :createFromAscii("CharColor"));
// extract the value from any

any >>= cellColor;

2.5.7 Sequence

A sequence is a homogeneous collection of values of one UNO type with a variable number of
elements. Sequences map to arrays in most current language bindings. Although such collections
are sometimes implemented as objects with element access methods in UNO (e.g., via the
com.sun.star.container.XEnumeration interface), there is also the sequence type, to be used
where remote performance matters. Sequences are always written with pointed brackets in the API
reference:

// a sequence of strings is notated as follows in the API reference
sequence< string > aStringSequence;

In Java, you treat sequences as arrays. (But do not use null for empty sequences, use arrays
created via new and with a length of zero instead.) Furthermore, keep in mind that you only create
an array of references when creating an array of Java objects, the actual objects are not allocated.

52 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html

Therefore, you must use new to create the array itself, then you must again use new for every single
object and assign the new objects to the array.

An empty sequence of PropertyValue structs is frequently needed for loadComponentFromURL:

// create an empty array of PropertyValue structs for loadComponentFromURL

PropertyValue[] emptyProps = new PropertyValue[0];

A sequence of PropertyValue structs is needed to use loading parameters with 1oadComponent-
FromURL () . The possible parameter values for loadComponentFromURL () and the
com.sun.star.frame.XStorable interface can be found in the service
com.sun.star.document.MediaDescriptor.

// create an array with one PropertyValue struct for loadComponentFromURL, it contains references only
PropertyValue[] loadProps = new PropertyValue[l];

// instantiate PropertyValue struct and set its member fields
PropertyValue asTemplate = new PropertyValue () ;
asTemplate.Name = "AsTemplate";

asTemplate.Value = Boolean.TRUE;

// assign PropertyValue struct to first element in our array of references to PropertyValue structs
loadProps[0] = asTemplate;

// load calc file as template

XComponent xSpreadsheetComponent = xComponentLoader.loadComponentFromURL (
"file:///X:/share/samples/english/spreadsheets/OfficeSharingAssoc.sxc",
" _blank", 0, loadProps);

In OpenOffice.org Basic, a simple Dim creates an empty array.

'OpenOffice.org Basic
Dim loadProps () 'empty array

A sequence of structs is created using new together with Dim.

'OpenOffice.org Basic

Dim loadProps (0) as new com.sun.star.beans.PropertyValue 'one PropertyValue

In C++, there is a class template for sequences. An empty sequence can be created by omitting the
number of elements required.

//CH+
Sequence< ::com::sun::star::beans::PropertyValue > loadProperties; // empty sequence

If you pass a number of elements, you get an array of the requested length.

//C++

Sequence< ::com::sun::star::beans::PropertyValue > loadProps(1);
// the structs are default constructed

loadProps[0] .Name = OUString::createFromAscii("AsTemplate");
loadProps[0] .Handle <<= true;

Reference< XComponent > rComponent = rComponentLoader->loadComponentFromURL (
OUString::createFromAscii ("private:factory/swriter"),
OUString::createFromAscii ("_blank"),

0,
loadProps) ;

2.5.8 Element Access

We have already seen in section 2.4 First Steps - How to get Objects in OpenOffice.org that sets of
objects can also be provided through element access methods. The three most important kinds of
element access interfaces are com.sun.star.container.XNameContainer,
com.sun.star.container.XIndexContainer and com.sun.star.container.XEnumeration.

The three element access interfaces are examples of how the fine-grained interfaces of the
OpenOffice.org API allow consistent object design.

All three interfaces inherit from xElementAccess, i.e., they include the methods:

type getElementType ()
boolean hasElements (

53

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html

to find out basic information about the set of elements. The method hasElements () answers the
question if a set contains elements at all, and which type a set contains. In Java and C++, you can

get information about a UNO type through com. sun.star.uno.Type, cf. the Java UNO and the C+
+ UNO reference.

The com.sun.star.container.XIndexContainer and com.sun.star.container.XNameCon-
tainer interface have a parallel design. Consider both interfaces in UML notation.

com.sun.star.container.
XElementAccess

<<interface>>

com.sun.star.container.
XElementAccess

<<interface>>

type getElementType ()
boolean hasElements ()

type getElementType ()
boolean hasElements ()

com.sun.star.container.
XIndexAccess

<<interface>>

com.sun.star.container.
XNameAccess

<<interface>>

any getBylndex (long index)
long getCount ()

any getByName (string name)
sequence <sting> getElementNames ()
boolean hasByName (string name)

com.sun.star.container.
XIndexReplace

<<interface>>

com.sun.star.container.
XNameReplace

<<interface>>

void replaceBylndex
(long index, any element)

void replaceByName
(string name, any element)

com.sun.star.container.
XIndexContainer

<<interface>>

com.sun.star.container.
XNameContainer

<<interface>>

void insertBylndex
(long index, any element)
void removeByIndex (long index)

void insertByName
(string name, any element)
void removeByName (string name)

Illustration 2.4 Indexed and Named Container

The XxIndexAccess/XNameAccess interfaces are about getting an element. The
XIndexReplace/XNameReplace interfaces allow you to replace existing elements without changing
the number of elements in the set, whereas the XIndexContainer/XNameContainer interfaces
allow you to increase and decrease the number of elements by inserting and removing elements.

Many sets of named or indexed objects do not support the whole inheritance hierarchy of XxIndex-

Container or XNameContainer, because the capabilities added by every subclass are not always
logical for any set of elements.

The XEumerationAccess interface works differently from named and indexed containers below
the XElementAccess interface. XEnumerationAccess does not provide single elements like XName-

54 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html

Access and XIndexAccess, but it creates an enumeration of objects which has methods to go to the
next element as long as there are more elements.

com.sun.star.container.
XElementAccess

<<interface>>

type getElementType ()
boolean hasElements ()

com.sun.star.container.
XEnumerationAccess

<<interface>>

com.sun.star.container.XEnumeration
createEnumeration ()

|
: createEnumeration()
\/
com.sun.star.container.
XEnumeration

<<interface>>

boolean hasMoreElements ()
any nextElement ()

Hllustration 2.5: Enumerated
Container

Sets of objects sometimes support all element access methods, some also support only name, index,
or enumeration access. Always look up the various types in the API reference to see which access
methods are available.

For instance, the method getSheets () at the interface com.sun.star.sheet.XSpreadsheetDocu-
ment is specified to return a com.sun.star.sheet.XSpreadsheets interface inherited from
XNameContainer. In addition, the API reference tells you that the provided object supports the
com.sun.star.sheet.Spreadsheets service, which defines additional element access interfaces
besides XSpreadsheets.

Examples that show how to work with xNameAccess, XIndexAccess, and XEnumerationAccess
are provided below.

Name Access

The basic interface which hands out elements by name is the com.sun.star.container.XNameAc-
cess interface. It has three methods:

any getByName([in] string name)
sequence< string > getElementNames ()
boolean hasByName ([in] string name)

55

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html

In the FirstLoadComponent example above, the method getSheets () returned a
com.sun.star.sheet.XSpreadsheets interface, which inherits from xNameAccess. Therefore,
you could use getByName () to obtain the sheet "MySheet" by name from the xSpreadsheets
container:

XSpreadsheets xSpreadsheets = xSpreadsheetDocument.getSheets() ;

Object sheet = xSpreadsheets.getByName ("MySheet") ;

XSpreadsheet xSpreadsheet = (XSpreadsheet)UnoRuntime.queryInterface (
XSpreadsheet.class, sheet);

// use XSpreadsheet interface to get the cell Al at position 0,0 and enter 42 as value
XCell xCell = xSpreadsheet.getCellByPosition (0, 0);

Since getByName () returns an any, you have to use AnyConverter. toObject () and/or UnoRun-
time.queryInterface () before you can call methods at the spreadsheet object.

Index Access

The interface which hands out elements by index is the com. sun.star.container.xIndexAccess

interface. It has two methods:

any getByIndex([in] long index)

long getCount ()
The FirstLoadComponent example allows to demonstrate XIndexAccess. The API reference tells
us that the service returned by getSheets () isa com.sun.star.sheet.Spreadsheet service and
supports not only the interface com.sun.star.sheet.XSpreadsheets, but XIndexAccess as well.
Therefore, the sheets could have been accessed by index and not just by name by performing a
query for the XIndexAccess interface from our xSpreadsheets variable:

XIndexAccess xSheetIndexAccess = (XIndexAccess)UnoRuntime.queryInterface (
XIndexAccess.class, xSpreadsheets);

Object sheet = XSheetIndexAccess.getByIndex (0) ;

Enumeration Access

The interface com.sun.star.container.XEnumerationAccess creates enumerations that allow
traveling across a set of objects. It has one method:

com.sun.star.container.XEnumeration createEnumeration ()

The enumeration object gained from createEnumeration () supports the interface
com.sun.star.container.XEnumeration. With this interface we can keep pulling elements out of
the enumeration as long as it has more elements. XEnumeration supplies the methods:

boolean hasMoreElements ()
any nextElement ()

which are meant to build loops such as:
while (xCells.hasMoreElements()) {
Object cell = xCells.nextElement () ;

// do something with cell
}

For example, in spreadsheets you have the opportunity to find out which cells contain formulas.
The resulting set of cells is provided as XEnumerationAccess.

The interface that queries for cells with formulas is com.sun.star.sheet.XCellRangesQuery, it
defines (among others) a method

XSheetCellRanges queryContentCells (short cellFlags)

56 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XCellRangesQuery.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSpreadsheets.html

which queries for cells having content as defined in the constants group com.sun.star.sheet.Cell-
Flags. One of these cell flags is FORMULA. From queryContentCells () we receive an object with
an com.sun.star.sheet.XSheetCellRanges interface, which has these methods:

XEnumerationAccess getCells ()
String getRangeAddressesAsString()
sequence< com.sun.star.table.CellRangeAddress > getRangeAddresses ()

The method getCells () can be used to list all formula cells and the containing formulas in the
spreadsheet document from our FirstLoadComponent example, utilizing XEnumerationAccess.
(FirstSteps/ FirstLoadComponent.java)

XCellRangesQuery xCellQuery = (XCellRangesQuery)UnoRuntime.queryInterface (
XCellRangesQuery.class, sheet);

XSheetCellRanges xFormulaCells = xCellQuery.queryContentCells (
(short) com.sun.star.sheet.CellFlags.FORMULA) ;

XEnumerationAccess xFormulas = xFormulaCells.getCells() ;
XEnumeration xFormulaEnum = xFormulas.createEnumeration() ;

while (xFormulaEnum.hasMoreElements()) ({
Object formulaCell = xFormulaEnum.nextElement () ;

// do something with formulaCell

xCell = (XCell)UnoRuntime.queryInterface (XCell.class, formulaCell);

XCellAddressable xCellAddress = (XCellAddressable)UnoRuntime.queryInterface (
XCellAddressable.class, xCell);

System.out.print ("Formula cell in column " + xCellAddress.getCellAddress () .Column
+ ", row " + xCellAddress.getCellAddress () .Row
+ " contains " + xCell.getFormula());

2.6 How do I know Which Type I Have?

A common problem is deciding what capabilities an object really has, after you receive it from a
method.

By observing the code completion in Java IDE, you can discover the base interface of an object
returned from a method. You will notice that 1oadComponentFromURL () returns a
com.sun.star.lang.XComponent.

By pressing Alt + F1 in the NetBeans IDE you can read specifications about the interfaces and
services you are using.

However, methods can only be specified to return one interface type. The interface you get from a

method very often supports more interfaces than the one that is returned by the method (especially
when the design of those interfaces predates the availability of multiple-inheritance interface types
in UNO). Furthermore, the interface does not tell anything about the properties the object contains.

Therefore you should uses this manual to get an idea how things work. Then start writing code,
using the code completion and the API reference.

In addition, you can try the Instancelnspector, a Java tool which is part of the OpenOffice.org SDK
examples. It is a Java component that can be registered with the office and shows interfaces and
properties of the object you are currently working with.

In OpenOffice.org Basic, you can inspect objects using the following Basic properties.

sub main

oDocument = thiscomponent

msgBox (oDocument .dbg_methods)

msgBox (oDocument .dbg properties)

msgBox (oDocument .dbg_supportedInterfaces)
end sub

57

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XSheetCellRanges.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html

58

2.7 Example: Hello Text, Hello Table, Hello Shape

The goal of this section is to give a brief overview of those mechanisms in the OpenOffice.org API,
which are common to all document types. The three main application areas of OpenOffice.org are
text, tables and drawing shapes. The point is: texts, tables and drawing shapes can occur in all
three document types, no matter if you are dealing with a Writer, Calc or Draw/Impress file, but
they are treated in the same manner everywhere. When you master the common mechanisms, you
will be able to insert and use texts, tables and drawings in all document types.

2.7.1 Common Mechanisms for Text, Tables and Drawings

We want to stress the common ground, therefore we start with the common interfaces and proper-
ties that allow to manipulate existing texts, tables and drawings. Afterwards we will demonstrate
the different techniques to create text, table and drawings in each document type.

The key interfaces and properties to work with existing texts, tables and drawings are the
following:

For text the interface com.sun.star. text.XText contains the methods that change the actual text
and other text contents (examples for text contents besides conventional text paragraphs are text
tables, text fields, graphic objects and similar things, but such contents are not available in all
contexts). When we talk about text here, we mean any text - text in text documents, text frames,
page headers and footers, table cells or in drawing shapes. xText is the key for text everywhere in
OpenOffice.org.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html

com.sun.star.text.XTextRange
<<interface>>

void setString (string text)

string getString ()
com.sun.star.textXTextRange getStart ()
com.sun.star.textXTextRange getEnd ()
com.sun.star.textXText getText ()

com.sun.star.text.XSimpleText
<<interface>>

com.sun.star.textXTextCursor createTextCursor ()
com.sun.star.textXTextCursor createTextCursorByRange
(com.sun.star.text.XTextRange textRange)
void insertString
(com.sun.star.text.XTextRange textRange, string text, boolean absorb)
void insertControlCharacter
(com.sun.star.text.XTextRange textRange, short controlCharacter,
boolean absorb)

com.sun.star.text.XText
<<interface>>

void insertTextContent
(com.sun.star.text.XTextRange textRange,
com.sun.star.text.XTextContent content, boolean absorb)
void removeTextContent (com.sun.star.text.XTextContent content)

Hllustration 2.6: XTextRange

The interface com.sun.star. text.XText has the ability to set or get the text as a single string, and
to locate the beginning and the end of a text. Furthermore, xText can insert strings at an arbitrary
position in the text and create text cursors to select and format text. Finally, XText handles text
contents through the methods insertTextContent and removeTextContent, although not all
texts accept text contents other than conventional text. In fact, XText covers all this by inheriting
from com.sun.star.text.XSimpleText thatis inherited from com.sun.star.text.XTextRange.

Text formatting happens through the properties which are described in the services
com.sun.star.style.ParagraphProperties and com.sun.star.style.CharacterProperties.

The following example method manipulateText () adds text, then it uses a text cursor to select
and format a few words using CharacterbProperties, afterwards it inserts more text. The method
manipulateText () only contains the most basic methods of xText so that it works with every text
object. In particular, it avoids insertTextContent (), since there are no text contents except for
conventional text that can be inserted in all text objects.(FirstSteps/HelloTextTableShape java)

protected void manipulateText (XText xText) throws com.sun.star.uno.Exception ({
// simply set whole text as one string
xText.setString ("He lay flat on the brown, pine-needled floor of the forest, "
+ "his chin on his folded arms, and high overhead the wind blew in the tops "
+ "of the pine trees.");

// create text cursor for selecting and formatting

XTextCursor xTextCursor = xText.createTextCursor();

XPropertySet xCursorProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xTextCursor);

// use cursor to select "He lay" and apply bold italic
xTextCursor.gotoStart (false) ;

59

http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSimpleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSimpleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XSimpleText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html

xTextCursor.goRight ((short) 6, true);
// from CharacterProperties
xCursorProps.setPropertyValue ("CharPosture",
com.sun.star.awt.FontSlant.ITALIC) ;
xCursorProps.setPropertyValue ("CharWeight",
new Float (com.sun.star.awt.FontWeight.BOLD)) ;

// add more text at the end of the text using insertString
xTextCursor.gotoEnd (false) ;
xText.insertString (xTextCursor, " The mountainside sloped gently where he lay; "
+ "but below it was steep and he could see the dark of the oiled road "
+ "winding through the pass. There was a stream alongside the road "
+ "and far down the pass he saw a mill beside the stream and the falling water "
+ "of the dam, white in the summer sunlight.", false);
// after insertString the cursor is behind the inserted text, insert more text
xText.insertString (xTextCursor, "\n \"Is that the mill?\" he asked.", false);
}

In tables and table cells, the interface com.sun.star.table.XCellRange allows you to retrieve
single cells and subranges of cells. Once you have a cell, you can work with its formula or numeric
value through the interface com.sun.star.table.XCell.

com.sun.star.table.XCellRange
<<interface>>

com.sun.star.tableXCell getCellByPosition

(long nColumn, long nRow)
com.sun.star.tableXCellRange getCellRangeByPosition

(long nLeft, long nTop, long nRight, long nBottom)
com.sun.star.tableXCellRange getCellRangeByName

(string aRange)

com.sun.star.table.XCell
<<interface>>

string getFormula ()

void setFormula (string aFormula)

double getValue ()

void setValue (double nValue)
com.sun.star.table.CellContentType getType ()
long getEror ()

Illustration 2.7: Cell and Cell Range

Table formatting is partially different in text tables and spreadsheet tables. Text tables use the
properties specified in com.sun.star. text.TextTable, whereas spreadsheet tables use
com.sun.star.table.CellProperties. Furthermore there are table cursors that allow to select

and format cell ranges and the contained text. But since a com.sun.star.text.TextTableCursor
works quite differently from a com. sun.star.sheet.SheetCellCursor, we will discuss them in
the chapters about text and spreadsheet documents.(FirstSteps/HelloTextTableShape.java)

protected void manipulateTable (XCellRange xCellRange) throws com.sun.star.uno.Exception {

String backColorPropertyName = "";
XPropertySet xTableProps = null;

// enter column titles and a cell value

// Enter "Quotation" in Al, "Year" in Bl. We use setString because we want to change the whole
// cell text at once

XCell xCell = xCellRange.getCellByPosition(0,0);

XText xCellText = (XText)UnoRuntime.queryInterface (XText.class, xCell);

xCellText.setString ("Quotation") ;

xCell = xCellRange.getCellByPosition (1,0);

xCellText = (XText)UnoRuntime.queryInterface (XText.class, xCell);

xCellText.setString ("Year") ;

// cell value
xCell = xCellRange.getCellByPosition(1l,1);
xCell.setValue (1940) ;

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SheetCellCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCell.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XCellRange.html

// select the table headers and get the cell properties

XCellRange xSelectedCells = xCellRange.getCellRangeByName ("Al:B1");

XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xSelectedCells);

// format the color of the table headers and table borders

// we need to distinguish text and spreadsheet tables:

// - the property name for cell colors is different in text and sheet cells

// — the common property for table borders is com.sun.star.table.TableBorder, but
// we must apply the property TableBorder to the whole text table,

// whereas we only want borders for spreadsheet cells with content.

// XServiceInfo allows to distinguish text tables from spreadsheets
XServiceInfo xServiceInfo = (XServiceInfo)UnoRuntime.queryInterface (
XServiceInfo.class, xCellRange);

// determine the correct property name for background color and the XPropertySet interface
// for the cells that should get colored border lines
if (xServiceInfo.supportsService ("com.sun.star.sheet.Spreadsheet”)) {
backColorPropertyName = "CellBackColor";
// select cells
xSelectedCells = xCellRange.getCellRangeByName ("Al:B2");
// table properties only for selected cells
xTableProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xSelectedCells);
}
else 1if (xServiceInfo.supportsService ("com.sun.star.text.TextTable")) {
backColorPropertyName = "BackColor";
// table properties for whole table
xTableProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xCellRange);
}
// set cell background color
xCellProps.setPropertyValue (backColorPropertyName, new Integer (0x99CCFF)) ;

// set table borders
// create description for blue line, width 10
// colors are given in ARGB, comprised of four bytes for alpha-red-green-blue as in O0xAARRGGBB
BorderLine theline = new BorderLine();
theLine.Color = 0x000099;
thelLine.OuterLineWidth = 10;
// apply line description to all border lines and make them valid
TableBorder bord = new TableBorder () ;
bord.VerticallLine = bord.HorizontalLine =
bord.LeftLine = bord.RightLine =
bord.TopLine = bord.BottomLine =
theLine;
bord.IsVerticallineValid = bord.IsHorizontalLineValid =
bord.IsLeftLineValid = bord.IsRightLineValid =
bord.IsTopLineValid = bord.IsBottomLineValid =
true;

xTableProps.setPropertyValue ("TableBorder", bord);

}

On drawing shapes, the interface com.sun.star.drawing.XShape is used to determine the position
and size of a shape.

com.sun.star.drawing.XShape

<<interface>>

string getShapeType ()

com.sun.star.awt.Point getPosition ()

void setPosition (com.sun.star.awt.Point aPosition)
com.sun.star.awt.Size getSize () invoke

void setSize (com.sun.star.awt.Size aSize)

Hllustration 2.8: XShape

Everything else is a matter of property-based formatting and there is a multitude of properties to
use. OpenOffice.org comes with eleven different shapes that are the basis for the drawing tools in

the GUI (graphical user interface). Six of the shapes have individual properties that reflect their
characteristics. The six shapes are:

- com.sun.star.drawing.EllipseShape for circles and ellipses.

- com.sun.star.drawing.RectangleShape for boxes.

61

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RectangleShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RectangleShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RectangleShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/EllipseShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/EllipseShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/EllipseShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/XShape.html

62

com.sun.star.drawing.TextShape for text boxes.

com.sun.star.drawing.CaptionShape for labeling.

com.sun.star.drawing.MeasureShape for metering.

com.sun.star.drawing.ConnectorShape for lines that can be "glued" to other shapes to draw
connecting lines between them.

Five shapes have no individual properties, rather they share the properties defined in the service
com.sun.star.drawing.PolyPolygonBezierDescriptor:

com.sun.star.drawing.LineShape is for lines and arrows.
com.sun.star.drawing.PolyLineShape is for open shapes formed by straight lines.
com.sun.star.drawing.PolyPolygonShape is for shapes formed by one or more polygons.

com.sun.star.drawing.ClosedBezierShape is for closed bezier shapes.

com.sun.star.drawing.PolyPolygonBezierShape is for combinations of multiple polygon
and Bezier shapes.

All of these eleven shapes use the properties from the following services:

.

com.sun.star.drawing.Shape describes basic properties of all shapes such as the layer a
shape belongs to, protection from moving and sizing, style name, 3D transformation and name.

com.sun.star.drawing.LineProperties determines how the lines of a shape look

com.sun.star.drawing.Text has no properties of its own, but includes:

- com.sun.star.drawing.TextProperties that affects numbering, shape growth and text
alignment in the cell, text animation and writing direction.

- com.sun.star.style.ParagraphProperties is concerned with paragraph formatting.

. com.sun.star.style.CharacterProperties formats characters

com.sun.star.drawing.ShadowProperties deals with the shadow of a shape.

com.sun.star.drawing.RotationDescriptor sets rotation and shearing of a shape.

com.sun.star.drawing.FillProperties is only for closed shapes and describes how the
shape is filled.

com.sun.star.presentation.Shape adds presentation effects to shapes in presentation docu-
ments.

Consider the following example showing how these properties work: (FirstSteps/HelloTextTable-
Shape.java)

protected void manipulateShape (XShape xShape) throws com.sun.star.uno.Exception {

// for usage of setSize and setPosition in interface XShape see method useDraw() below
XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface (XPropertySet.class, xShape);
// colors are given in ARGB, comprised of four bytes for alpha-red-green-blue as in O0xAARRGGBB
xShapeProps.setPropertyValue ("FillColor", new Integer (0x99CCFF)) ;

xShapeProps.setPropertyValue ("LineColor", new Integer (0x000099)) ;

// angles are given in hundredth degrees, rotate by 30 degrees

xShapeProps.setPropertyValue ("RotateAngle", new Integer (3000));

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Shape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ClosedBezierShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ClosedBezierShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ClosedBezierShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyLineShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyLineShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyLineShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonBezierDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ConnectorShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/MeasureShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/MeasureShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/MeasureShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/CaptionShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/CaptionShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/CaptionShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextShape.html

2.7.2 Creating Text, Tables and Drawing Shapes

The three manipulatexxx methods above took text, table and shape objects as parameters and
altered them. The following methods show how to create such objects in the various document
types. Note that all documents have their own service factory to create objects to be inserted into
the document. Aside from that it depends very much on the document type how you proceed. This
section only demonstrates the different procedures, the explanation can be found in the chapters
about Text, Spreadsheet and Drawing Documents.

First, a small convenience method is used to create new documents.(FirstSteps/HelloTextTable-
Shape.java)

protected XComponent newDocComponent (String docType) throws java.lang.Exception {

String loadUrl = "private:factory/" + docType;

xRemoteServiceManager = this.getRemoteServiceManager (unoUrl) ;

Object desktop = xRemoteServiceManager.createInstanceWithContext (
"com.sun.star.frame.Desktop", xRemoteContext) ;

XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface (
XComponentLoader.class, desktop);

PropertyValue[] loadProps = new PropertyValue[O0];

return xComponentLoader.loadComponentFromURL (loadUrl, " blank", 0, loadProps);

Text, Tables and Drawings in Writer

The method useliriter creates a writer document and manipulates its text, then uses the docu-
ment’s internal service manager to instantiate a text table and a shape, inserts them and manipu-
lates the table and shape (FirstSteps/HelloTextTableShape.java). Refer to 8 Text Documents for
more detailed information.

protected void useWriter () throws java.lang.Exception {
try {
// create new writer document and get text, then manipulate text
XComponent xWriterComponent = newDocComponent ("swriter") ;
XTextDocument xTextDocument = (XTextDocument)UnoRuntime.queryInterface (
XTextDocument.class, xWriterComponent) ;
XText xText = xTextDocument.getText () ;

manipulateText (xText) ;

// get internal service factory of the document
XMultiServiceFactory xWriterFactory = (XMultiServiceFactory)UnoRuntime.queryInterface (
XMultiServiceFactory.class, xWriterComponent) ;

// insert TextTable and get cell text, then manipulate text in cell

Object table = xWriterFactory.createInstance ("com.sun.star.text.TextTable");

XTextContent xTextContentTable = (XTextContent)UnoRuntime.queryInterface (
XTextContent.class, table);

xText.insertTextContent (xText.getEnd (), xTextContentTable, false);

XCellRange xCellRange = (XCellRange)UnoRuntime.queryInterface (
XCellRange.class, table);

XCell xCell = xCellRange.getCellByPosition (0, 1);

XText xCellText = (XText)UnoRuntime.queryInterface (XText.class, xCell);

manipulateText (xCellText) ;
manipulateTable (xCellRange) ;

// insert RectangleShape and get shape text, then manipulate text

Object writerShape = xWriterFactory.createlInstance (
"com.sun.star.drawing.RectangleShape") ;

XShape xWriterShape = (XShape)UnoRuntime.queryInterface (
XShape.class, writerShape);

xWriterShape.setSize (new Size (10000, 10000));

XTextContent xTextContentShape = (XTextContent)UnoRuntime.queryInterface (
XTextContent.class, writerShape);

xText.insertTextContent (xText.getEnd (), xTextContentShape, false);
XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, writerShape);

// wrap text inside shape
xShapeProps.setPropertyValue ("TextContourFrame", new Boolean (true));

63

XText xShapeText = (XText)UnoRuntime.queryInterface (XText.class,

manipulateText (xShapeText) ;
manipulateShape (xWriterShape) ;
}

catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
xRemoteContext = null;
throw e;

Text, Tables and Drawings in Calc

The method useCalc creates a calc document, uses its document factory to create a shape and
manipulates the cell text, table and shape. The chapter 9 Spreadsheet Documents treats all aspects of

spreadsheets. (FirstSteps/HelloTextTableShape.java)

protected void useCalc() throws java.lang.Exception {

writerShape) ;

try {
// create new calc document and manipulate cell text
XComponent xCalcComponent = newDocComponent ("scalc");
XSpreadsheetDocument xSpreadsheetDocument =
(XSpreadsheetDocument) UnoRuntime.queryInterface (
XSpreadsheetDocument .class, xCalcComponent) ;
Object sheets = xSpreadsheetDocument.getSheets() ;
XIndexAccess xIndexedSheets = (XIndexAccess)UnoRuntime.queryInterface (
XIndexAccess.class, sheets);
Object sheet = xIndexedSheets.getByIndex(0);

//get cell A2 in first sheet

XCellRange xSpreadsheetCells = (XCellRange)UnoRuntime.queryInterface (
XCellRange.class, sheet);

XCell xCell = xSpreadsheetCells.getCellByPosition(0,1);

XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xCell);

xCellProps.setPropertyValue ("IsTextWrapped", new Boolean (true));

XText xCellText = (XText)UnoRuntime.queryInterface (XText.class, xCell);

manipulateText (xCellText) ;
manipulateTable (xSpreadsheetCells) ;

// get internal service factory of the document
XMultiServiceFactory xCalcFactory = (XMultiServiceFactory)UnoRuntime.queryInterface (
XMultiServiceFactory.class, xCalcComponent) ;
// get Drawpage
XDrawPageSupplier xDrawPageSupplier =
(XDrawPageSupplier)UnoRuntime.queryInterface (XDrawPageSupplier.class, sheet);
XDrawPage xDrawPage = xDrawPageSupplier.getDrawPage () ;

// create and insert RectangleShape and get shape text, then manipulate text
Object calcShape = xCalcFactory.createInstance (
"com.sun.star.drawing.RectangleShape") ;
XShape xCalcShape = (XShape)UnoRuntime.queryInterface (
XShape.class, calcShape) ;
xCalcShape.setSize (new Size (10000, 10000));
xCalcShape.setPosition (new Point (7000, 3000));

xDrawPage.add (xCalcShape) ;

XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, calcShape);

// wrap text inside shape

xShapeProps.setPropertyValue ("TextContourFrame", new Boolean(true));

XText xShapeText = (XText)UnoRuntime.queryInterface (XText.class, calcShape);

manipulateText (xShapeText) ;
manipulateShape (xCalcShape) ;

}

catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
xRemoteContext = null;
throw e;

64 OpenOffice.org 2.3 Developer's Guide « June 2007

Drawings and Text in Draw

The method useDraw creates a draw document and uses its document factory to instantiate and
add a shape, then it manipulates the shape. The chapter 10 Drawing casts more light on drawings
and presentations. (FirstSteps/HelloTextTableShape.java)

protected void useDraw () throws java.lang.Exception ({
try {

}

//create new draw document and insert ractangle shape
XComponent xDrawComponent = newDocComponent ("sdraw") ;
XDrawPagesSupplier xDrawPagesSupplier =
(XDrawPagesSupplier)UnoRuntime.queryInterface (
XDrawPagesSupplier.class, xDrawComponent) ;

Object drawPages = xDrawPagesSupplier.getDrawPages () ;

XIndexAccess xIndexedDrawPages = (XIndexAccess)UnoRuntime.queryInterface (
XIndexAccess.class, drawPages);

Object drawPage = xIndexedDrawPages.getByIndex (0) ;

XDrawPage xDrawPage = (XDrawPage)UnoRuntime.queryInterface (XDrawPage.class, drawPage);

// get internal service factory of the document
XMultiServiceFactory xDrawFactory =
(XMultiServiceFactory)UnoRuntime.queryInterface (
XMultiServiceFactory.class, xDrawComponent) ;

Object drawShape = xDrawFactory.createInstance (
"com.sun.star.drawing.RectangleShape") ;

XShape xDrawShape = (XShape)UnoRuntime.queryInterface (XShape.class, drawShape) ;

xDrawShape.setSize (new Size (10000, 20000));

xDrawShape.setPosition (new Point (5000, 5000));

xDrawPage.add (xDrawShape) ;

XText xShapeText = (XText)UnoRuntime.queryInterface (XText.class, drawShape);
XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, drawShape) ;

// wrap text inside shape
xShapeProps.setPropertyValue ("TextContourFrame", new Boolean (true)) ;

manipulateText (xShapeText) ;
manipulateShape (xDrawShape) ;

catch(com.sun.star.lang.DisposedException e) { //works from Patch 1

xRemoteContext = null;
throw e;

65

Professional UNO

This chapter provides in-depth information about UNO and the use of UNO in various program-
ming languages. There are four sections:

The 3.1 Professional UNO - Introduction gives an outline of the UNO architecture.

The section 3.2 Professional UNO - API Concepts supplies background information on the API
reference.

The section 3.3 Professional UNO - UNO Concepts describes the mechanics of UNO, i.e. it shows
how UNO objects connect and communicate with each other.

The section 3.4 Professional UNO - UNO Language Bindings elaborates on the use of UNO from
Java, C++, OpenOffice.org Basic, COM automation, and CLL

3.1 Introduction

The goal of UNO (Universal Network Objects) is to provide an environment for network objects
across programming language and platform boundaries. UNO objects run and communicate
everywhere. UNO reaches this goal by providing the following fundamental framework:

UNO objects are specified in an abstract meta language, called UNOIDL (UNO Interface Defini-
tion Language), which is similar to CORBA IDL or MIDL. From UNOIDL specifications,
language dependent header files and libraries can be generated to implement UNO objects in
the target language. UNO objects in the form of compiled and bound libraries are called compo-
nents. Components must support certain base interfaces to be able to run in the UNO environ-
ment.

To instantiate components in a target environment UNO uses a factory concept. This factory is
called the service manager. It maintains a database of registered components which are known
by their name and can be created by name. The service manager might ask Linux to load and
instantiate a shared object written in C++ or it might call upon the local Java VM to instantiate a
Java class. This is transparent for the developer, there is no need to care about a component’s
implementation language. Communication takes place exclusively over interface calls as speci-
fied in UNOIDL.

UNO provides bridges to send method calls and receive return values between processes and
between objects written in different implementation languages. The remote bridges use a
special UNO remote protocol (URP) for this purpose which is supported for sockets and pipes.
Both ends of the bridge must be UNO environments, therefore a language-specific UNO
runtime environment to connect to another UNO process in any of the supported languages is
required. These runtime environments are provided as language bindings.

67

68

Most objects of OpenOffice.org are able to communicate in a UNO environment. The specifica-
tion for the programmable features of OpenOffice.org is called the OpenOffice.org APIL

3.2 API Concepts

The OpenOffice.org APl is a language independent approach to specify the functionality of
OpenOffice.org. Its main goals are to provide an API to access the functionality of OpenOffice.org,
to enable users to extend the functionality by their own solutions and new features, and to make
the internal implementation of OpenOffice.org exchangeable.

A long term target on the OpenOffice.org roadmap is to split the existing OpenOffice.org into
small components which are combined to provide the complete OpenOffice.org functionality. Such
components are manageable, they interact with each other to provide high level features and they
are exchangeable with other implementations providing the same functionality, even if these new
implementations are implemented in a different programming language. When this target will be
reached, the API, the components and the fundamental concepts will provide a construction kit,
which makes OpenOffice.org adaptable to a wide range of specialized solutions and not only an
office suite with a predefined and static functionality.

This section provides you with a thorough understanding of the concepts behind the
OpenOftfice.org APL In the API reference there are UNOIDL data types which are unknown
outside of the APL The reference provides abstract specifications which sometimes can make you
wonder how they map to implementations you can actually use.

The data types of the API reference are explained in 3.2.1 Professional UNO - API Concepts - Data
Types. The relationship between API specifications and OpenOffice.org implementations is treated
in 3.2.2 Professional UNO - API Concepts - Understanding the API Reference.

3.2.1 Data Types

The data types in the API reference are UNO types which have to be mapped to the types of any
programming language that can be used with the OpenOffice.org API. In the chapter 2 First Steps
the most important UNO types were introduced. However, there is much more to be said about
simple types, interfaces, properties and services in UNO. There are special flags, conditions and
relationships between these entities which you will want to know if you are working with UNO on
a professional level.

This section explains the types of the API reference from the perspective of a developer who wants
to use the OpenOffice.org API. If you are interested in writing your own components, and you
must define new interfaces and types, please refer to the chapter 4 Writing UNO Components,
which describes how to write your own UNOIDL specifications and how to create UNO compo-
nents.

Simple Types

UNO provides a set of predefined, simple types which are listed in the following table:

UNO Type Description
voi d Empty type, used only as method return type and in any.
bool ean Can be true or false.

OpenOffice.org 2.3 Developer's Guide « June 2007

UNO Type
byt e

short

Description
Signed 8-bit integer type (ranging from -128 to 127, inclusive).
Signed 16-bit integer type (ranging from ? 32768 to 32767, inclusive).

unsigned short
long
unsigned long

hyper

unsigned hyper

Unsigned 16-bit integer type (deprecated).
Signed 32-bit integer type (ranging from ? 2147483648 to 2147483647, inclusive).
Unsigned 32-bit integer type (deprecated).

Signed 64-bit integer type (ranging from ? 9223372036854775808 to
9223372036854775807, inclusive).

Unsigned 64-bit integer type (deprecated).

float IEC 60559 single precision floating point type.

double IEC 60559 double precision floating point type.

char Represents individual Unicode characters (more precisely: individual UTF-16 code
units).

string Represents Unicode strings (more precisely: strings of Unicode scalar values).

type Meta type that describes all UNO types.

any Special type that can represent values of all other types.

The chapters about language bindings 3.4.1 Professional UNO - UNO Language Bindings - Java
Language Binding, 3.4.2 Professional UNO - UNO Language Bindings - C++ Language Binding, 3.4.3
Professional UNO - UNO Language Bindings - OpenOffice.org Basic and 3.4.4 Professional UNO - UNO
Language Bindings - Automation Bridge describe how these types are mapped to the types of your
target language.

The Any Type

The special type any can represent values of all other UNO types. In the target languages, the any
type requires special treatment. There is an AnyConverter in Java and special operators in C++.
For details, see the section 3.4 Professional UNO - UNO Language Bindings about language bindings.

Interfaces

Communication between UNO objects is based on object interfaces. Interfaces can be seen from the
outside or the inside of an object.

From the outside of an object, an interface provides a functionality or special aspect of the object.
Interfaces provide access to objects by publishing a set of operations that cover a certain aspect of
an object without telling anything about its internals.

The concept of interfaces is quite natural and frequently used in everyday life. Interfaces allow the
creation of things that fit in with each other without knowing internal details about them. A power
plug that fits into a standard socket or a one-size-fits-all working glove are simple examples. They
all work by standardizing the minimal conditions that must be met to make things work together.

A more advanced example would be the remote control aspect of a simple TV system. One
possible feature of a TV system is a remote control. The remote control functions can be described
by an XPower and an xChannel interface. The illustration below shows a RemoteControl object
with these interfaces:

69

70

XPower

turnOn ()
RemoteControl turnOff ()

<<service>>

XChannel

select (short sChannel)
next ()
previous ()

Illustration 3.1: RemoteControl service

The xpPower interface has the functions turnon () and turnoff () to control the power and the
XChannel interface has the functions select (), next (), previous () to control the current
channel. The user of these interfaces does not care if he uses an original remote control that came
with a TV set or a universal remote control as long as it carries out these functions. The user is only
dissatisfied if some of the functions promised by the interface do not work with a remote control.

From the inside of an object, or from the perspective of someone who implements a UNO object,
interfaces are abstract specifications. The abstract specification of all the interfaces in the
OpenOffice.org API has the advantage that user and implementer can enter into a contract,
agreeing to adhere to the interface specification. A program that strictly uses the OpenOffice.org
API according to the specification will always work, while an implementer can do whatever he
wants with his objects, as long as he serves the contract.

UNO uses the interface type to describe such aspects of UNO objects. By convention, all inter-
face names start with the letter X to distinguish them from other types. All interface types must
inherit the com.sun.star.uno.XInterface root interface, either directly or in the inheritance hier-
archy. XInterface is explained in 3.3.3 Professional UNO - UNO Concepts - Using UNO Interfaces.
The interface types define methods (sometimes also called operations) to provide access to the
specified UNO objects.

Interfaces allow access to the data inside an object through dedicated methods (member functions)
which encapsulate the data of the object. The methods always have a parameter list and a return
value, and they may define exceptions for smart error handling.

The exception concept in the OpenOffice.org API is comparable with the exception concepts
known from Java or C++. All operations can raise com.sun.star.uno.RuntimeExceptions
without explicit specification, but all other exceptions must be specified. UNO exceptions are
explained in the section 3.3.7 Professional UNO - UNO Concepts - Exception Handling below.

Consider the following two examples for interface definitions in UNOIDL notation. UNOIDL inter-
faces resemble Java interfaces, and methods look similar to Java method signatures. However, note
the flags in square brackets in the following example:

// base interface for all UNO interfaces

interface XInterface

{
any queryInterface([in] type aType);
[oneway] void acquire();
[oneway] void release();

}i
// fragment of the Interface com.sun.star.io.XInputStream

interface XInputStream: com::sun::star::uno::XInterface
{
long readBytes([out] sequence<byte> aData,
[in] long nBytesToRead)
raises(com::sun::star::io::NotConnectedException,
com: :sun::star::io::BufferSizeExceededException,
com: :sun::star::io::I0OException) ;

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

The [oneway] flag indicates that an operation can be executed asynchronously if the underlying
method invocation system does support this feature. For example, a UNO Remote Protocol (URP)
bridge is a system that supports oneway calls.

Although there are no general problems with the specification and the implementation of the UNO oneway
feature, there are several API remote usage scenarios where oneway calls cause deadlocks in
OpenOffice.org. Therefore, do not introduce new oneway methods with new OpenOffice.org UNO APIs.

There are also parameter flags. Each parameter definition begins with one of the direction flags in,
out, or inout to specify the use of the parameter:

in specifies that the parameter will be used as an input parameter only
out specifies that the parameter will be used as an output parameter only
inout specifies that the parameter will be used as an input and output parameter

These parameter flags do not appear in the API reference. The fact that a parameter is an [out] or
[inout] parameter is explained in the method details.

Interfaces consisting of methods form the basis for service specifications.

Services

We have seen that a single-inheritance interface describes only one aspect of an object. However, it
is quite common that objects have more than one aspect. UNO uses multiple-inheritance interfaces
and services to specify complete objects which can have many aspects.

In a first step, all the various aspects of an object (which are typically represented by single-inheri-
tance interfaces) are grouped together in one multiple-inheritance interface type. If such an object
is obtainable by calling specific factory methods, this step is all that is needed. The factory methods
are specified to return values of the given, multiple-inheritance interface type. If, however, such
an object is available as a general service at the global component context, a service description
must be provided in a second step. This service description will be of the new style, mapping the
service name (under which the service is available at the component context) to the given,
multiple-inheritance interface type.

For backward compatibility, there are also old-style services, which comprise a set of single-inheri-
tance interfaces and properties that are needed to support a certain functionality. Such a service
can include other old-style services as well. The main drawback of an old-style service is that it is
unclear whether it describes objects that can be obtained through specific factory methods (and for
which there would therefore be no new-style service description), or whether it describes a general
service that is available at the global component context, and for which there would thus be a
new-style service description.

From the perspective of a user of a UNO object, the object offers one or sometimes even several
independent, multiple-inheritance interfaces or old-style services described in the API reference.
The services are utilized through method calls grouped in interfaces, and through properties,
which are handled through special interfaces as well. Because the access to the functionality is
provided by interfaces only, the implementation is irrelevant to a user who wants to use an object.

From the perspective of an implementer of a UNO object, multiple-inheritance interfaces and old-
style services are used to define a functionality independently of a programming language and
without giving instructions about the internal implementation of the object. Implementing an
object means that it must support all specified interfaces and properties. It is possible that a UNO
object implements more than one independent, multiple-inheritance interface or old-style service.
Sometimes it is useful to implement two or more independent, multiple-inheritance interfaces or

71

services because they have related functionality, or because they support different views to the

object.

Ilustration 3.1 shows the relationship between interfaces and services. The language independent
specification of an old-style service with several interfaces is used to implement a UNO object that
fulfills the specification. Such a UNO object is sometimes called a component, although that term
is more correctly used to describe deployment entities within a UNO environment. The illustration
uses an old-style service description that directly supports multiple interfaces; for a new-style
service description, the only difference would be that it would only support one multiple-inheri-
tance interface, which in turn would inherit the other interfaces.

<<service>>

Service Specification

"

<<component>>

Service Implementation

b4

Interfaces

Hllustration 3.2: Interfaces, services and implementation

The functionality of a TV system with a TV set and a remote control can be described in terms of
service specifications. The interfaces XPower and xChannel described above would be part of a
service specification RemoteControl. The new service TvSet consists of the three interfaces
XPower, XChannel and XStandby to control the power, the channel selection, the additional power
function standby () and a timer () function.

TVSet

<<service>>

XPower

turnOn ()
turnOff ()

XStandby

standby ()
setTimer (short sMinutes)

XChannel

select (short sChannel)
next ()
previous ()

Hlustration 3.3: TV System Specification

Referencing Interfaces

Remote
Control

<<service>>

XPower

turnOn ()
turnOff ()

XChannel

select (short sChannel)
next ()
previous ()

References to interfaces in a service definition mean that an implementation of this service must
offer the specified interfaces. However, optional interfaces are possible. If a multiple-inheritance
interface inherits an optional interface, or an old-style service contains an optional interface, any
given UNO object may or may not support this interface. If you utilize an optional interface of a
UNO object, always check if the result of queryInterface () is equal to null and react accord-

72 OpenOffice.org 2.3 Developer's Guide ¢ June 2007

ingly otherwise your code will not be compatible with implementations without the optional
interface and you might end up with null pointer exceptions. The following UNOIDL snippet
shows a fragment of the specification for the old-style com.sun.star.text.TextDocument service
in the OpenOffice.org APIL Note the flag optional in square brackets, which makes the interfaces
XFootnotesSupplier and XEndnotesSupplier non—mandatory.

// com.sun.star.text.TextDocument
service TextDocument

{

interface com::sun::star::text::XTextDocument;

interface com::sun::star::util::XSearchable;

interface com::sun::star::util::XRefreshable;

[optional] interface com::sun::star::text::XFootnotesSupplier;
[optional] interface com::sun::star::text::XEndnotesSupplier;

bi

Service Constructors

New-style services can have constructors, similar to interface methods:

service SomeService: XSomeInterface {

createl () ;
create2 ([in] long argl, [in] string arg2);
create3([in] any... rest);

}i

In the above example, there are three explicit constructors, named createl, create2, and create3.
The first has no parameters, the second has two normal parameters, and the third has a special rest
parameter, which accepts an arbitrary number of any values. Constructor parameters may only be
[in], and a rest parameter must be the only parameter of a constructor, and must be of type any;
also, unlike an interface method, a service constructor does not specify a return type.

The various language bindings map the UNO constructors into language-specific constructs, which
can be used in client code to obtain instances of those services, given a component context. The
general convention (followed, for example, by the Java and C++ language bindings) is to map each
constructor to a static method (resp. function) with the same name, that takes as a first parameter
an XComponentContext, followed by all the parameters specified in the constructor, and returns
an (appropriately typed) service instance. If an instance cannot be obtained, a
com.sun.star.uno.DeploymentException is thrown. The above Someservice would map to the
following Java 1.5 class, for example:

public class SomeService {
public static XSomeInterface createl (
com.sun.star.uno.XComponentContext context) { ... }
public static XSomeInterface create2 (
com.sun.star.uno.XComponentContext context, int argl, String arg2) { ... }
public static XSomeInterface create3(
com.sun.star.uno.XComponentContext context, Object... rest) { ... }
}
Service constructors can also have exception specifications (raises (Exceptionl, ...)),
which are treated in the same way as exception specifications of interface methods. (If a

constructor has no exception specification, it may only throw runtime exceptions,
com.sun.star.uno.DeploymentException in particular.)

If a new-style service is written using the short form,

service SomeService: XSomelInterface;

then it has an implicit constructor. The exact behavior of the implicit constructor is language-

binding specific, but it is typically named create, takes no arguments besides the XComponent-
Context, and may only throw runtime exceptions.

73

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html

Including Properties

When the structure of the OpenOffice.org API was founded, the designers discovered that the
objects in an office environment would have huge numbers of qualities that did not appear to be
part of the structure of the objects, rather they seemed to be superficial changes to the underlying
objects. It was also clear that not all qualities would be present in each object of a certain kind.
Therefore, instead of defining a complicated pedigree of optional and non-optional interfaces for
each and every quality, the concept of properties was introduced. Properties are data in an object
that are provided by name over a generic interface for property access, that contains getProper-
tyValue () and setPropertyValue () access methods. The concept of properties has other advan-
tages, and there is more to know about properties. Please refer to 3.3.4 Professional UNO - UNO
Concepts - Properties for further information about properties.

Old-style services can list supported properties directly in the UNOIDL specification. A property
defines a member variable with a specific type that is accessible at the implementing component by
a specific name. It is possible to add further restrictions to a property through additional flags.
The following old-style service references one interface and three optional properties. All known
API types can be valid property types:

// com.sun.star.text.TextContent
service TextContent
{
interface com::sun::star::text::XTextContent;
[optional, property] com::sun::star::text::TextContentAnchorType AnchorType;
[optional, readonly, property] sequence<com::sun::star::text::TextContentAnchorType> AnchorTypes;
[optional, property] com::sun::star::text::WrapTextMode TextWrap;
}i

Possible property flags are:
optional
The property does not have to be supported by the implementing component.

readonly
The value of the property cannot be changed using com.sun.star.beans.XPropertySet.

bound
Changes of property values are broadcast to com. sun.star.beans.XPropertyChangeLis-
teners, if any were registered through com. sun.star.beans.XPropertySet.

constrained
The property broadcasts an event before its value changes. Listeners have the right to veto the
change.

maybeambiguous
Possibly the property value cannot be determined in some cases, for example, in multiple selec-
tions with different values.

maybedefault
The value might be stored in a style sheet or in the environment instead of the object itself.

maybevoid
In addition to the range of the property type, the value can be void. It is similar to a null value
in databases.

removable
The property is removable, this is used for dynamic properties.

transient

The property will not be stored if the object is serialized

74 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

Referencing other Services

Old-style services can include other old-style services. Such references may be optional. That a
service is included by another service has nothing to do with implementation inheritance, only the
specifications are combined. It is up to the implementer if he inherits or delegates the necessary
functionality, or if he implements it from scratch.

The old-style service com.sun.star.text.Paragraph in the following UNOIDL example includes
one mandatory service com.sun.star.text.TextContent and five optional services. Every para-
graph must be a TextContent. It can be a TextTable and it is used to support formatting proper-
ties for paragraphs and characters:

// com.sun.star.text.Paragraph

service Paragraph

{
service com::sun::star::text::TextContent;
[optional] service com::sun::star::text::TextTable;
[optional] service com::sun::star::style::ParagraphProperties;
[optional] service com::sun::star::style::CharacterProperties;
[optional] service com::sun::star::style::CharacterPropertiesAsian;
[optional] service com::sun::star::style::CharacterPropertiesComplex;

1
1
1
1

}i

If all the old-style services in the example above were multiple-inheritance interface types instead,
the structure would be similar: the multiple-inheritance interface type Paragraph would inherit
the mandatory interface TextContent and the optional interfaces TextTable, ParagraphProper-
ties, etc.

Service Implementations in Components

A component is a shared library or Java archive containing implementations of one or more services
in one of the target programming languages supported by UNO. Such a component must meet
basic requirements, mostly different for the different target language, and it must support the spec-
ification of the implemented services. That means all specified interfaces and properties must be
implemented. Components must be registered in the UNO runtime system. After the registration
all implemented services can be used by ordering an instance of the service at the appropriate
service factory and accessing the functionality over interfaces.

Based on our example specifications for a TvSet and a RemoteControl service, a component Remo-
teTVImpl could simulate a remote TV system:

RemoteTV

<<component>>

: :
v v

Remote

TVSet
Control
XStandby O— coricons —O XChannel

<<service>>

Hllustration 3.4: RemoteTVImpl Component

Such a RemoteTV component could be a jar file or a shared library. It would contain two service
implementations, TVSet and RemoteControl. Once the RemoteTV component is registered with
the global service manager, users can call the factory method of the service manager and ask for a
TVSet or a RemoteControl service. Then they could use their functionality over the interfaces

75

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html

76

XPower, XChannel and XStandby. When a new implementation of these services with better
performance or new features is available later on, the old component can be replaced without
breaking existing code, provided that the new features are introduced by adding interfaces.

Structs

A struct type defines several elements in a record. The elements of a struct are UNO types with
a unique name within the struct. Structs have the disadvantage not to encapsulate data, but the
absence of get () and set () methods can help to avoid the overhead of method calls over a UNO
bridge. UNO supports single inheritance for struct types. A derived struct recursively inherits
all elements of the parent and its parents.

// com.sun.star.lang.EventObject
/** specifies the base for all event objects and identifies the
source of the event.
/)
struct EventObject
{
/** refers to the object that fired the event.
*/

com: :sun: :star::uno: :XInterface Source;
}i

// com.sun.star.beans.PropertyChangeEvent
struct PropertyChangeEvent : com::sun::star::lang::EventObject {
string PropertyName;
boolean Further;
long PropertyHandle;
any OldValue;
any NewValue;
}i

A new feature of OpenOffice.org 2.0 is the polymorphic struct type. A polymorphic struct type
template is similar to a plain struct type, but it has one or more type parameters, and its members can
have these parameters as types. A polymorphic struct type template is not itself a UNO type it
has to be instantiated with actual type arguments to be used as a type.
// A polymorphic struct type template with two type parameters:
struct Poly<T,U> ({

T memberl;

T member2;

U member3;

long member4;
}i

// Using an instantiation of Poly as a UNO type:

interface XIfc { Poly<boolean, any> fn(); };

In the example, Poly<boolean, any> will be an instantiated polymorphic struct type with the
same form as the plain struct type

struct PolyBooleanAny {
boolean memberl;
boolean member2;
any member3;
long member4;

}i

Polymorphic struct types were added primarily to support rich interface type attributes that are as
expressive as maybeambiguous, maybedefault, Or maybevoid properties (see

com.sun.star.beans.Ambiguous, com.sun.star.beans.Defaulted,
com.sun.star.beans.Optional), but they are probably useful in other contexts, too.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Defaulted.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Defaulted.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Defaulted.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Ambiguous.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Ambiguous.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Ambiguous.html

Predefined Values

The API offers many predefined values, that are used as method parameters, or returned by
methods. In UNO IDL there are two different data types for predefined values: constants and
enumerations.

const

A const defines a named value of a valid UNO IDL type. The value depends on the specified type
and can be a literal (integer number, floating point number or a character), an identifier of another
const type or an arithmetic term using the operators: +, -, *, /, ~, &, |, %, ~, <<, >>.

Since a wide selection of types and values is possible in a const, const is occasionally used to build
bit vectors which encode combined values.

const short ID = 23;
const boolean ERROR = true;
const double PI = 3.1415;

Usually const definitions are part of a constants group.

constants

The constants type defines a named group of const values. A const in a constants group is
denoted by the group name and the const name. In the UNO IDL example below,
ImageAlign.RIGHT refers to the value 2:

constants ImageAlign {
const short LEFT = 0;
const short TOP = 1;
const short RIGHT = 2;
const short BOTTOM = 3;
bi

enum

An enun type is equivalent to an enumeration type in C++. It contains an ordered list of one or
more identifiers representing long values of the enum type. By default, the values are numbered
sequentially, beginning with 0 and adding 1 for each new value. If an enum value has been
assigned a value, all following enum values without a predefined value get a value starting from
this assigned value.

// com.sun.star.uno.TypeClass
enum TypeClass {

VOID,

CHAR,

BOOLEAN,

BYTE,

SHORT,
}i

enum Error {
SYSTEM = 10, // value 10

RUNTIME, // value 11
FATAL, // value 12
USER = 30, // value 30
SOFT // value 31

}i

If enums are used during debugging, you should be able to derive the numeric value of an enum
by counting its position in the API reference. However, never use literal numeric values instead of
enums in your programs.

Once an enum type has been specified and published, you can trust that it is not extended later on, for that
would break existing code. However, new const vaues may be added to a constant group.

77

78

Sequences

A sequence type is a set of elements of the same type, that has a variable number of elements. In
UNO IDL, the used element always references an existing and known type or another sequence
type. A sequence can occur as a normal type in all other type definitions.

sequence< com::sun::star::uno::XInterface >
sequence< string > getNamesOfIndex(sequence< long > indexes);

Modules

Modules are namespaces, similar to namespaces in C++ or packages in Java. They group services,
interfaces, structs, exceptions, enums, typedefs, constant groups and submodules with related
functional content or behavior. They are utilized to specify coherent blocks in the API, this allows
for a well-structured API. For example, the module com. sun.star. text contains interfaces and
other types for text handling. Some other typical modules are com.sun.star.uno,
com.sun.star.drawing, com.sun.star.sheet and com.sun.star.table. Identifiers inside a
module do not clash with identifiers in other modules, therefore it is possible for the same name to
occur more than once. The global index of the API reference shows that this does happen.

Although it may seem that the modules correspond with the various parts of OpenOffice.org, there
is no direct relationship between the API modules and the OpenOffice.org applications Writer,
Calc and Draw. Interfaces from the module com.sun.star. text are used in Calc and Draw.
Modules like com.sun.star.style Or com. sun.star.document provide generic services and
interfaces that are not specific to any one part of OpenOffice.org.

The modules you see in the API reference were defined by nesting UNO IDL types in module
instructions. For example, the module com.sun.star.uno contains the interface XInterface:

module com {
module sun {
module star {
module uno {
interface XInterface {

Exceptions

An exception type indicates an error to the caller of a function. The type of an exception gives a
basic description of the kind of error that occurred. In addition, the UNO IDL exception types
contain elements which allow for an exact specification and a detailed description of the error. The
exception type supports inheritance, this is freqzuently used to define a hierarchy of errors.
Exceptions are only used to raise errors, not as method parameters or return types.

UNO IDL requires that all exceptions must inherit from com. sun.star.uno.Exception. Thisisa
precondition for the UNO runtime.

// com.sun.star.uno.Exception is the base exception for all exceptions
exception Exception {

string Message;

Xinterface Context;
}i

// com.sun.star.uno.RuntimeException is the base exception for serious problems

// occuring at runtime, usually programming errors or problems in the runtime environment
exception RuntimeException : com::sun::star::uno::Exception {

}i

// com.sun.star.uno.SecurityException is a more specific RuntimeException
exception SecurityException : com::sun::star::uno::RuntimeException {

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/module-ix.html

}i

Exceptions may only be thrown by operations which were specified to do so. In contrast,
com.sun.star.uno.RuntimeExceptions can always occur.

The methods acquire() and release of the UNO base interface com. sun.star.uno.XInterface are an
exception to the above rule. They are the only operations that may not even throw runtime exceptions. But
in Java and C++ programs, you do not use these methods directly, they are handled by the respective
language binding.

Singletons

Singletons are used to specify named objects where exactly one instance can exist in the life of a
UNO component context. A singleton references one interface type and specifies that the only
existing instance of this singleton can be reached over the component context using the name of the
singleton. If no instance of the singleton exists, the component context will instantiate a new one.
An example of such a new-style singleton is

module com { module sun { module star { module deployment ({

?in?}et):?n}t;:hePackageManagerFactory: XPackageManagerFactory;

The various language bindings offer language-specific ways to obtain the instance of a new-style
singleton, given a component context. For example, in Java and C++ there is a static method (resp.
function) named get, that takes as its only argument an xComponentContext and returns the
(appropriately typed) singleton instance. If the instance cannot be obtained, a
com.sun.star.uno.DeploymentException is thrown.

There are also old-style singletons, which reference (old-style) services instead of interfaces.
However, for old-style services, the language bindings offer no get functionality.

3.2.2 Understanding the API Reference

Specification, Implementation and Instances

The API specifications you find in the API reference are abstract. The service descriptions of the
API reference are not about classes that previously exist somewhere. The specifications are first,
then the UNO implementation is created according to the specification. That holds true even for
legacy implementations that had to be adapted to UNO.

Moreover, since a component developer is free to implement services and interfaces as required,
there is not necessarily a one-to-one relationship between a certain service specification and a real
object. The real object can be capable of more things than specified in a service definition. For
example, if you order a service at the factory or receive an object from a getter or getProperty-
value () method, the specified features will be present, but there may be additional features. For
instance, the text document model has a few interfaces which are not included in the specification
for the com.sun.star.text.TextDocument.

Because of the optional interfaces and properties, it is impossible to comprehend fully from the
API reference what a given instance of an object in OpenOffice.org is capable of. The optional
interfaces and properties are correct for an abstract specification, but it means that when you leave
the scope of mandatory interfaces and properties, the reference only defines how things are
allowed to work, not how they actually work.

79

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html

80

Another important point is the fact that there are several entry points where object implementa-
tions are actually available. You cannot instantiate every old-style service that can be found in the
API reference by means of the global service manager. The reasons are:

Some old-style services need a certain context. For instance, it does not make sense to instan-
tiate a com.sun.star.text.TextFrame independently from an existing text document or any
other surrounding where it could be of any use. Such services are usually not created by the
global service manager, but by document factories which have the necessary knowledge to
create objects that work in a certain surrounding. That does not mean you will never be able to
get a text frame from the global service manager to insert. So, if you wish to use a service in the
API reference, ask yourself where you can get an instance that supports this service, and
consider the context in which you want to use it. If the context is a document, it is quite possible
that the document factory will be able to create the object.

Old-style services are not only used to specify possible class implementations. Sometimes they
are used to specify nothing but groups of properties that can be referenced by other old-style
services. That is, there are services with no interfaces at all. You cannot create such a service at
the service manager.

A few old-style services need special treatment. For example, you cannot ask the service
manager to create an instance of a com.sun.star.text.TextDocument. You must load it using
the method loadComponentFromUrl () at the desktop’s com.sun.star.frame.XComponent-—
Loader interface.

In the first and the last case above, using multiple-inheritance interface types instead of old-style
services would have been the right design choice, but the mentioned services predate the avail-
ability of multiple-inheritance interface types in UNO.

Consequently, it is sometimes confusing to look up a needed functionality in the API reference, for
you need a basic understanding how a functionality works, which services are involved, where
they are available etc., before you can really utilize the reference. This manual aims at giving you
this understanding about the OpenOffice.org document models, the database integration and the
application itself.

Object Composition

Interfaces support single and multiple inheritance, and they are all based on
com.sun.star.uno.XInterface. In the API reference, this is mirrored in the Base Hierarchy section
of any interface specification. If you look up an interface, always check the base hierarchy section
to understand the full range of supported methods. For instance, if you look up
com.sun.star.text.XText, you see two methods, insertTextContent () and removeTextCon-
tent (), but there are nine more methods provided by the inherited interfaces. The same applies to
exceptions and sometimes also to structs, which support single inheritance as well.

The service specifications in the API reference can contain a section Included Services , which is
similar to the above in that a single included old-style service might encompass a whole world of
services. However, the fact that a service is included has nothing to do with class inheritance. In
which manner a service implementation technically includes other services, by inheriting from
base implementations, by aggregation, some other kind of delegation or simply by re-imple-
menting everything is by no means defined (which it is not, either, for UNO interface inheritance).
And it is uninteresting for an APl user he can absolutely rely on the availability of the described
functionality, but he must never rely on inner details of the implementation, which classes provide
the functionality, where they inherit from and what they delegate to other classes.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html

3.3 UNO Concepts

Now that you have an advanced understanding of OpenOffice.org API concepts and you under-
stand the specification of UNO objects, we are ready to explore UNO, i.e. to see how UNO objects
connect and communicate with each other.

3.3.1 UNO Interprocess Connections

UNO objects in different environments connect via the interprocess bridge. You can execute calls
on UNO object instances, that are located in a different process. This is done by converting the
method name and the arguments into a byte stream representation, and sending this package to
the remote process, for example, through a socket connection. Most of the examples in this manual
use the interprocess bridge to communicate with the OpenOffice.org.

This section deals with the creation of UNO interprocess connections using the UNO APL

Starting OpenOffice.org in Listening Mode

Most examples in this developers guide connect to a running OpenOffice.org and perform API
calls, which are then executed in OpenOffice.org. By default, the office does not listen on a
resource for security reasons. This makes it necessary to make OpenOffice.org listen on an inter-
process connection resource, for example, a socket. Currently this can be done in two ways:

Start the office with an additional parameter:
soffice -accept=socket,host=0,port=2002;urp;
This string has to be quoted on unix shells, because the semicolon ’;’ is interpreted by the shells

Place the same string without "-accept="into a configuration file. You can edit the file
<OfficePath>/share/registry/data/org/openoffice/Setup.xcu

and replace the tag

<prop oor:name="ooSetupConnectionURL"/>

with

<prop oor:name="ooSetupConnectionURL">
<value>socket,host=localhost,port=2002;urp;StarOffice.ServiceManager
</value>

</prop>

If the tag is not present, add it within the tag

<node oor:name="Office"/>

This change affects the whole installation. If you want to configure it for a certain user in a
network installation, add the same tag within the node <node oor:name="0ffice/> to the file
Setup.xcu in the user dependent configuration directory
<OfficePath>/user/registry/data/org/openoffice/

Choose the procedure that suits your requirements and launch OpenOffice.org in listening mode
now. Check if it is listening by calling netstat -a or -na on the command-line. An output similar to
the following shows that the office is listening:

TCP <Hostname>:8100 <Fully qualified hostname>: 0 Listening

If you use the -n option, netstat displays addresses and port numbers in numerical form. This is
sometimes useful on UNIX systems where it is possible to assign logical names to ports.

If the office is not listening, it probably was not started with the proper connection URL parameter.
Check the Setup.xcu file or your command-line for typing errors and try again.

8l

82

Note: In versions before OpenOffice.org 1.1.0, there are several differences.

The configuration setting that makes the office listen everytime is located elsewhere. Open the file <Office-
Path>/share/config/registry/instance/org/openoffice/Setup.xml in an editor, and look for the element:

<ooSetupConnectionURL cfg:type="string"/>

Extend it with the following code:

<ooSetupConnectionURL cfg:type="string">
socket,port=2083;urp;
</ooSetupConnectionURL>

The commandline option -accept is ignored when there is a running instance of the office, including the
quick starter and the online help. If you use it, make sure that no soffice process runs on your system.

The various parts of the connection URL will be discussed in the next section.

Importing a UNO Object

The most common use case of interprocess connections is to import a reference to a UNO object
from an exporting server. For instance, most of the Java examples described in this manual retrieve
a reference to the OpenOffice.org ComponentContext. The correct way to do this is using the
com.sun.star.bridge.UnoUrlResolver service. Its main interface
com.sun.star.bridge.XUnoUrlResolver is defined in the following way:

interface XUnoUrlResolver: com::sun::star::uno::XInterface

{
/** resolves an object on the UNO URL */
com: :sun::star::uno::XInterface resolve([in] string sUnoUrl)
raises (com::sun::star::connection: :NoConnectException,
com: :sun::star::connection: :ConnectionSetupException,
com: :sun::star::lang::IllegalArgumentException) ;
}i
The string passed to the resolve () method is called a UNO URL. It must have the following

format:

UNO-Url

uno:connection-type,params;protocol-name,params;0ObjectName
LIl | | |
! | ! I
I Il] IV

An example URL could be uno:socket host=localhost,port=2002;urp;StarOfffice.ServiceManager. The
parts of this URL are:

I. The URL schema uno:. This identifies the URL as UNO URL and distinguishes it from others,
such as http: or ftp: URLs.

II. A string which characterizes the type of connection to be used to access the other process. Option-
ally, directly after this string, a comma separated list of name-value pairs can follow, where
name and value are separated by a '=". The currently supported connection types are described
in 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections - Opening a Connection.
The connection type specifies the transport mechanism used to transfer a byte stream, for
example, TCP/IP sockets or named pipes.

III. A string which characterizes the type of protocol used to communicate over the established byte
stream connection. The string can be followed by a comma separated list of name-value pairs,

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html

which can be used to customize the protocol to specific needs. The suggested protocol is urp
(UNO Remote Protocol). Some useful parameters are explained below. Refer to the document
named UNO-URL at udk.openoffice.org. for the complete specification.

IV. A process must explicitly export a certain object by a distinct name. It is not possible to access
an arbitrary UNO object (which would be possible with IOR in CORBA, for instance).

The following example demonstrates how to import an object using the UnoUrlResolver:
(ProfUNO/InterprocessConn/ UrlResolver.java):

XComponentContext xLocalContext =
com.sun.star.comp.helper.Bootstrap.createInitialComponentContext (null) ;

// initial serviceManager
XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager () ;

// create a URL resolver
Object urlResolver = xLocalServiceManager.createInstanceWithContext (
"com.sun.star.bridge.UnoUrlResolver", xLocalContext);

// query for the XUnoUrlResolver interface
XUnoUrlResolver xUrlResolver =
(XUnoUrlResolver) UnoRuntime.queryInterface (XUnoUrlResolver.class, urlResolver) ;

// Import the object
Object rInitialObject = xUrlResolver.resolve (
“uno:socket,host=localhost, port=2002;urp; StarOffice.ServiceManager”) ;

// XComponentContext

if (null != rInitialObject) {
System.out.println("initial object successfully retrieved") ;
} else {

System.out.println("given initial-object name unknown at server side");

}

The usage of the UnoUrlResolver has certain disadvantages. You cannot:
- be notified when the bridge terminates for whatever reasons

- close the underlying interprocess connection

- offer a local object as an initial object to the remote process

These issues are addressed by the underlying API, which is explained below. in 3.3.1 Professional
UNO - UNO Concepts - UNO Interprocess Connections - Opening a Connection.

Characteristics of the Interprocess Bridge

The whole bridge is threadsafe and allows multiple threads to execute remote calls. The dispatcher
thread inside the bridge cannot block because it never executes calls. It instead passes the requests
to worker threads.

- A synchronous call sends the request through the connection and lets the requesting thread wait
for the reply. All calls that have a return value, an out parameter, or throw an exceptions other
than a RuntimeException must be synchronous.

- Anasynchronous (or oneway) call sends the request through the connection and immediately
returns without waiting for a reply. It is currently specified at the IDL interface if a request is
synchronous or asynchronous by using the [oneway] modifier.

Although there are no general problems with the specification and the implementation of the UNO oneway
feature, there are several API remote usage scenarios where oneway calls cause deadlocks in
OpenOffice.org. Therefore do not introduce new oneway methods with new OpenOffice.org UNO APIs.

For synchronous requests, thread identity is guaranteed. When process A calls process B, and
process B calls process A, the same thread waiting in process A will take over the new request.

83

This avoids deadlocks when the same mutex is locked again. For asynchronous requests, this is not
possible because there is no thread waiting in process A. Such requests are executed in a new
thread. The series of calls between two processes is guaranteed. If two asynchronous requests from
process A are sent to process B, the second request waits until the first request is finished.

Although the remote bridge supports asynchronous calls, this feature is disabled by default. Every
call is executed synchronously. The oneway flag of UNO interface methods is ignored. However,
the bridge can be started in a mode that enables the oneway feature and thus executes calls flagged
with the [oneway] modifier as asynchronous calls. To do this, the protocol part of the connection
string on both sides of the remote bridge must be extended by ’, Negotiate=0, ForceSynchro-
nous=0". For example:

soffice “-accept=socket,host=0,port=2002;urp,Negotiate=0,ForceSynchronous=0;"
for starting the office and

"uno:socket,host=localhost,port=2002;urp,Negotiate=0,ForceSynchronous=0; StarOf-
fice.ServiceManager"

as UNO URL for connecting to it.

" The asynchronous mode can cause deadlocks in OpenOffice.org. It is recommended not to activate it if one
@ side of the remote bridge is OpenOffice.org.

Opening a Connection

The method to import a UNO object using the UnoUr1Resolver has drawbacks as described in the
previous chapter. The layer below the UnoUrlRresolver offers full flexibility in interprocess
connection handling.

UNO interprocess bridges are established on the com.sun.star.connection.XConnection inter-
face, which encapsulates a reliable bidirectional byte stream connection (such as a TCP/IP connec-
tion).

interface XConnection: com::sun::star::uno::XInterface
{
long read([out] sequence < byte > aReadBytes , [in] long nBytesToRead
raises(com::sun::star::io::IOException);
void write([in] sequence < byte > aData
raises(com::sun::star::io::IOException);
void flush() raises(com::sun::star::io::IOException)
void close() raises(com::sun::star::io::IOException)
string getDescription () ;

i
There are different mechanisms to establish an interprocess connection. Most of these mechanisms

follow a similar pattern. One process listens on a resource and waits for one or more processes to
connect to this resource.

This pattern has been abstracted by the services com.sun.star.connection.Acceptor that
exports the com.sun.star.connection.XAcceptor interface and
com.sun.star.connection.Connector that exports the com.sun.star.connection.XConnector

interface.

interface XAcceptor: com::sun::star::uno::XInterface
{
XConnection accept([in] string sConnectionDescription
raises(AlreadyAcceptingException,
ConnectionSetupException,
com: :sun::star::lang::IllegalArgumentException) ;

void stopAccepting() ;
}i

interface XConnector: com::sun::star::uno::XInterface

{

XConnection connect([in] string sConnectionDescription)

84 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XConnector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XConnector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XConnector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Connector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Connector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Connector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XAcceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XAcceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XAcceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Acceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Acceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Acceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XConnection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/XConnection.html

raises (NoConnectException,ConnectionSetupException) ;
i
The acceptor service is used in the listening process while the connector service is used in the
actively connecting service. The methods accept () and connect () get the connection string as a
parameter. This is the connection part of the UNO URL (between uno: and ;urp).

The connection string consists of a connection type followed by a comma separated list of name-
value pairs. The following table shows the connection types that are supported by default.

Connection
type
socket Reliable TCP/IP socket connection
Parameter Description
host Hostname or IP number of the resource to listen on/connect. May be
localhost. In an acceptor string, this may be 0 ("host=0"), which means,
that it accepts on all available network interfaces.
port TCP/IP port number to listen on/connect to.
tcpNoDelay Corresponds to the socket option tcpNoDelay. For a UNO connection,
this parameter should be set to 1 (this is NOT the default - it must be
added explicitly). If the default is used (0), it may come to 200 ms
delays at certain call combinations.
pipe A named pipe (uses shared memory). This type of interprocess connection is marginally

faster than socket connections and works only if both processes are located on the same
machine. It does not work on Java by default, because Java does not support named pipes

directly
Parameter Description
name Name of the named pipe. Can only accept one process on name on one

machine at a time.

You can add more kinds of interprocess connections by implementing connector and acceptor services, and
choosing the service name by the scheme com. sun.star.connection.Connector.<connection-
type>, where <connection-type> is the name of the new connection type.

If you implemented the service com. sun.star.connection.Connector.mytype, use the UnoUrlRe-
solver with the URL ‘uno:mytype,paraml=foo;urp;StarOffice.ServiceManager’ to establish the interprocess
connection to the office.

85

86

Creating the Bridge

XAcceptor XConnector
Acceptor _— Connector —_—

accept connect
stopAccepting stopAccepting

! 1

accept ()I connect () "

Y |

|

1

. XConnection XlInstanceProvider
Connection _O phlethble Instance _O XInstanceProvider

Provider
write () Xlinterface getinstance ()

read ()
close ()

getInstance ()

|
< XBridge V
Xlnterface getInstance () Stub
Bridge (for a local
XComponent object)
addEventListener ()

removeEventListener ()
dispose ()

>

: getinstance ()

createBridge () v

. XBridgeFactory Proxy
gc"tjge _ (for a remote
ry createBridge object)

(name, protocol,
connection, instanceProv)
getBridge (name)

Hlustration 3.5: The interaction of services that are needed to initiate a UNO interprocess bridge. The
interfaces have been simplified.

The XConnection instance can now be used to establish a UNO interprocess bridge on top of the
connection, regardless if the connection was established with a Connector or Acceptor service (or
another method). To do this, you must instantiate the service com.sun.star.bridge.BridgeFac-
tory. It supports the com.sun.star.bridge.xBridgeFactory interface.

interface XBridgeFactory: com::sun::star::uno::XInterface
{
XBridge createBridge (
[in] string sName,
[in] string sProtocol ,
[in] com::sun::star::connection::XConnection aConnection ,
[in] XInstanceProvider anInstanceProvider)
raises (BridgeExistsException , com::sun::star::lang::IllegalArgumentException);
XBridge getBridge([in] string sName);
sequence < XBridge > getExistingBridges();
}i

The BridgeFactory service administrates all UNO interprocess connections. The createBridge ()
method creates a new bridge:

OpenOffice.org 2.3 Developer's Guide * June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html

You can give the bridge a distinct name with the sName argument. Later the bridge can be
retrieved by using the getBridge () method with this name. This allows two independent code
pieces to share the same interprocess bridge. If you call createBridge () with the name of an
already working interprocess bridge, a BridgeExistsException is thrown. When you pass an
empty string, you always create a new anonymous bridge, which can never be retrieved by
getBridge () and which never throws a BridgeExistsException.

The second parameter specifies the protocol to be used on the connection. Currently, only the
“urp’ protocol is supported. In the UNO URL, this string is separated by two ;. The urp string
may be followed by a comma separated list of name-value pairs describing properties for the
bridge protocol. The urp specification can be found on udk.openoffice.org.

The third parameter is the XConnection interface as it was retrieved by Connector/Acceptor
service.

The fourth parameter is a UNO object, which supports the com.sun.star.bridge.XInstan-
ceProvider interface. This parameter may be a null reference if you do not want to export a
local object to the remote process.

interface XInstanceProvider: com::sun::star::uno::XInterface
{
com: :sun::star::uno::XInterface getInstance([in] string sInstanceName)
raises (com::sun::star::container::NoSuchElementException);

}i

The BridgeFactory returns a com.sun.star.bridge.XBridge interface.

interface XBridge: com::sun::star::uno::XInterface

{

XInterface getlInstance([in] string sInstanceName) ;

string getName () ;

string getDescription () ;
i
The xBridge.getInstance () method retrieves an initial object from the remote counterpart. The
local xBridge.getInstance () call arrives in the remote process as an
XInstanceProvider.getInstance () call. The object returned can be controlled by the string
sInstanceName. It completely depends on the implementation of xInstanceProvider, which

object it returns.

The xBridge interface can be queried for a com. sun.star.lang.XComponent interface, that adds a
com.sun.star.lang.XEventListener to the bridge. This listener will be terminated when the
underlying connection closes (see above). You can also call dispose () on the XComponent interface
explicitly, which closes the underlying connection and initiates the bridge shutdown procedure.

Closing a Connection
The closure of an interprocess connection can occur for the following reasons:

The bridge is not used anymore. The interprocess bridge will close the connection when all the
proxies to remote objects and all stubs to local objects have been released. This is the normal
way for a remote bridge to destroy itself. The user of the interprocess bridge does not need to
close the interprocess connection directly it is done automatically. When one of the communi-
cating processes is implemented in Java, the closure of a bridge is delayed to that point in time
when the VM finalizes the last proxies/stubs. Therefore it is unspecified when the interprocess
bridge will be closed.

The interprocess bridge is directly disposed by calling its dispose () method.
The remote counterpart process crashes.
The connection fails. For example, failure may be due to a dialup internet connection going

down.

87

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridge.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridge.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridge.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XInstanceProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XInstanceProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XInstanceProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XInstanceProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XInstanceProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XInstanceProvider.html

88

- An error in marshalling/unmarshalling occurs due to a bug in the interprocess bridge imple-
mentation, or an IDL type is not available in one of the processes.

Except for the first reason, all other connection closures initiate an interprocess bridge shutdown
procedure. All pending synchronous requests abort with a com.sun.star.lang.DisposedExcep=
tion, which is derived from the com.sun.star.uno.RuntimeException. Every call that is initi-
ated on a disposed proxy throws a DisposedException. After all threads have left the bridge
(there may be a synchronous call from the former remote counterpart in the process), the bridge
explicitly releases all stubs to the original objects in the local process, which were previously held
by the former remote counterpart. The bridge then notifies all registered listeners about the
disposed state using com.sun.star.lang.XEventListener. The example code for a connection-
aware client below shows how to use this mechanism. The bridge itself is destroyed, after the last
proxy has been released.

Unfortunately, the various listed error conditions are not distinguishable.

Example: A Connection Aware Client

The following example shows an advanced client which can be informed about the status of the
remote bridge. A complete example for a simple client is given in the chapter 2 First Steps.

The following Java example opens a small awt window containing the buttons new writer and
new calc that opens a new document and a status label. It connects to a running office when a
button is clicked for the first time. Therefore it uses the connector/bridge factory combination, and
registers itself as an event listener at the interprocess bridge.

When the office is terminated, the disposing event is terminated, and the Java program sets the text
in the status label to ‘disconnected” and clears the office desktop reference. The next time a button
is pressed, the program knows that it has to re-establish the connection.

The method getComponentLoader () retrieves the XComponentLoader reference on demand:

(ProfUNO/InterprocessConn/ConnectionAwareClient.java)
XComponentLoader _officeComponentLoader = null;

// local component context
XComponentContext _ctx;

protected com.sun.star.frame.XComponentLoader getComponentLoader ()
throws com.sun.star.uno.Exception {

XComponentLoader officeComponentLoader = officeComponentLoader;
if (officeComponentLoader == null) {
// instantiate connector service
Object x = ctx.getServiceManager ().createInstanceWithContext (
"com.sun.star.connection.Connector", ctx);
XConnector xConnector = (XConnector) UnoRuntime.queryInterface (XConnector.class, Xx);

// helper function to parse the UNO URL into a string array
String a[] = parseUnoUrl(_url);
if (null == a) {
throw new com.sun.star.uno.Exception ("Couldn't parse UNO URL "+ _url);

}

// connect using the connection string part of the UNO URL only.
XConnection connection = xConnector.connect (a[0]);

X = _ctx.getServiceManager().createlnstanceWithContext(
"com.sun.star.bridge.BridgeFactory", _ctx);
XBridgeFactory xBridgeFactory = (XBridgeFactory) UnoRuntime.queryInterface (

XBridgeFactory.class , Xx);
// create a nameless bridge with no instance provider
// using the middle part of the UNO URL
XBridge bridge = xBridgeFactory.createBridge("" , a[l] , connection , null);

// query for the XComponent interface and add this as event listener

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html

XComponent xComponent = (XComponent) UnoRuntime.queryInterface (
XComponent.class, bridge);
xComponent.addEventListener (this) ;

// get the remote instance
x = bridge.getInstance (a[2]);

// Did the remote server export this object ?
if (null == x) {
throw new com.sun.star.uno.Exception (
"Server didn't provide an instance for" + a[2], null);

}

// Query the initial object for its main factory interface
XMultiComponentFactory xOfficeMultiComponentFactory = (XMultiComponentFactory)
UnoRuntime.queryInterface (XMultiComponentFactory.class, x);

// retrieve the component context (it's not yet exported from the office)
// Query for the XPropertySet interface.
XPropertySet xProperySet = (XPropertySet)
UnoRuntime.queryInterface (XPropertySet.class, xOfficeMultiComponentFactory) ;

// Get the default context from the office server.
Object oDefaultContext =
xProperySet.getPropertyValue ("DefaultContext") ;

// Query for the interface XComponentContext.
XComponentContext xOfficeComponentContext =
(XComponentContext) UnoRuntime.queryInterface (
XComponentContext.class, oDefaultContext);

// now create the desktop service

// NOTE: use the office component context here !

Object oDesktop = xOfficeMultiComponentFactory.createInstanceWithContext (
"com.sun.star.frame.Desktop", xOfficeComponentContext) ;

officeComponentLoader = (XComponentLoader)
UnoRuntime.queryInterface (XComponentLoader.class, oDesktop);

if (officeComponentLoader == null) {
throw new com.sun.star.uno.Exception (
"Couldn't instantiate com.sun.star.frame.Desktop" , null);
}
_officeComponentLoader = officeComponentLoader;
}
return officeComponentLoader;

}

This is the button event handler:

public void actionPerformed (ActionEvent event) {
try {

String sUrl;

if (event.getSource() == _btnWriter) {
sUrl = "private:factory/swriter";

} else {
sUrl = "private:factory/scalc";

}

getComponentLoader () . loadComponentFromURL (
sUrl, " blank", 0,new com.sun.star.beans.PropertyValue[0]);

_txtLabel.setText ("connected");

} catch (com.sun.star.connection.NoConnectException exc) {
_txtLabel.setText (exc.getMessage()) ;

} catch (com.sun.star.uno.Exception exc) {
_txtLabel.setText (exc.getMessage());
exc.printStackTrace() ;
throw new java.lang.RuntimeException (exc.getMessage()) ;

}

And the disposing handler clears the officeComponentLoader reference:

public void disposing(com.sun.star.lang.EventObject event) {
// remote bridge has gone down, because the office crashed or was terminated.
_officeComponentLoader = null;
_txtLabel.setText ("disconnected") ;

90

3.3.2 Service Manager and Component Context

This chapter discusses the root object for connections to OpenOffice.org (and to any UNO applica-
tion) the service manager. The root object serves as the entry point for every UNO application
and is passed to every UNO component during instantiation.

Two different concepts to get the root object currently exist. StarOffice6.0 and OpenOffice.orgl.0
use the previous concept. Newer versions or product patches use the newer concept and provide
the previous concept for compatibility issues only. First we will look at the previous concept, the
service manager as it is used in the main parts of the underlying OpenOffice.org implementation of
this guide. Second, we will introduce the component context which is the newer concept and
explain the migration path.

Service Manager

The com.sun.star.lang.ServiceManager is the main factory in every UNO application. It instan-
tiates services by their service name, to enumerate all implementations of a certain service, and to
add or remove factories for a certain service at runtime. The service manager is passed to every
UNO component during instantiation.

XMultiServiceFactory Interface

The main interface of the service manager is the com.sun.star.lang.XMultiServiceFactory
interface. It offers three methods: createInstance (), createInstanceWithArguments () and
getAvailableServiceNames ().

interface XMultiServiceFactory: com::sun::star::uno::XInterface

{
com: :sun::star::uno::XInterface createlnstance([in] string aServiceSpecifier
raises(com::sun::star::uno::Exception);

com: :sun::star::uno::XInterface createlInstanceWithArguments (
[in] string ServiceSpecifier,
[in] sequence<any> Arguments)
raises(com::sun::star::uno::Exception);

sequence<string> getAvailableServiceNames () ;

createInstance () returns a default constructed service instance. The returned service is guar-
anteed to support at least all interfaces, which were specified for the requested servicename.
The returned XInterface reference can now be queried for the interfaces specified at the
service description.

When using the service name, the caller does not have any influence on which concrete imple-
mentation is instantiated. If multiple implementations for a service exist, the service manager is
free to decide which one to employ. This in general does not make a difference to the caller
because every implementation does fulfill the service contract. Performance or other details
may make a difference. So it is also possible to pass the implementation name instead of the
service name, but it is not advised to do so as the implementation name may change.

In case the service manager does not provide an implementation for a request, a null reference
is returned, so it is mandatory to check. Every UNO exception may be thrown during instantia-
tion. Some may be described in the specification of the service that is to be instantiated, for
instance, because of a misconfiguration of the concrete implementation. Another reason may be
the lack of a certain bridge, for instance the Java-C++ bridge, in case a Java component shall be
instantiated from C++ code.

createlnstanceWithArguments () instantiates the service with additional parameters. A
service signals that it expects parameters during instantiation by supporting the

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html

com.sun.star.lang.XInitialization interface. The service definition should describe the
meaning of each element of the sequence. There maybe services which can only be instantiated
with parameters.

- getAvailableServiceNames () returns every servicename the service manager does support.

XContentEnumerationAccess Interface

The com.sun.star.container.XContentEnumerationAccess interface allows the creation of an
enumeration of all implementations of a concrete servicename.
interface XContentEnumerationAccess: com::sun::star::uno::XInterface
{
com: :sun::star::container::XEnumeration createContentEnumeration([in] string aServiceName) ;
sequence<string> getAvailableServiceNames () ;
}i
ThecreateContentEnumeration()Ineﬂuxlnﬁurnsacom.sun.star.container.XEnumeration
interface. Note that it may return an empty reference in case the enumeration is empty.

interface XEnumeration: com::sun::star::uno::XInterface
{

boolean hasMoreElements () ;

any nextElement ()
raises(com::sun::star::container::NoSuchElementException,
com: :sun::star::lang: :WrappedTargetException) ;

}i

In the above case, the returned any of the method Xenumeration.nextElement () contains a
com.sun.star.lang.XSingleServiceFactory interface for each implementation of this specific
service. You can, for instance, iterate over all implementations of a certain service and check each
one for additional implemented services. The xSingleServiceFactory interface provides such a
method. With this method, you can instantiate a feature rich implementation of a service.

XSet Interface

The com.sun.star.container.XSet interface allows the insertion or removal of
com.sun.star.lang.XSingleServiceFactory Or com.sun.star.lang.XSingleComponentFac-
tory implementations to the service manager at runtime without making the changes permanent.
When the office application terminates, all the changes are lost. The object must also support the
com.sun.star.lang.XServiceInfo interface that provides information about the implementation
name and supported services of the component implementation.

This feature may be of particular interest during the development phase. For instance, you can
connect to a running office, insert a new factory into the service manager and directly instantiate
the new service without having it registered before.

The chapter 4.9.6 Writing UNO Components - Deployment Options for Components - Special Service
Manager Confiqurations shows an example that demonstrates how a factory is inserted into the
service manager.

Component Context

The service manager was described above as the main factory that is passed to every new instanti-
ated component. Often a component needs more functionality or information that must be
exchangeable after deployment of an application. In this context, the service manager approach is
limited.

91

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumeration.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html

92

Therefore, the concept of the component context was created. In future, it will be the central object in
every UNO application. It is basically a read-only container offering named values. One of the
named values is the service manager. The component context is passed to a component during its
instantiation. This can be understood as an environment where components live (the relationship is
similar to shell environment variables and an executable program).

XComponentContext
ComponentContext
getValueByName ()
getServiceManager ()
other Service XMultiComponentFactory
Singletons Manager
<<singleton>> <<singleton>> createlnstanceWithContext ()

Hlustration 3.6: ComponentContext and the ServiceManager

ComponentContext API

The component context only supports the com. sun.star.uno.XComponentContext interface.

// module com::sun::star::uno
interface XComponentContext : XInterface

{

any getValueByName ([in] string Name) ;

com: :sun::star::lang: :XMultiComponentFactory getServiceManager () ;
}i
The getvalueByName () method returns a named value. The getServiceManager () is a conve-
nient way to retrieve the value named /singleton/com.sun.star.lang.theServiceManager. It
returns the ServiceManager singleton, because most components need to access the service

manager. The component context offers at least three kinds of named values:

Singletons (/singletons/...)
The singleton concept was introduced in 3.2.1 Professional UNO - API Concepts - Data Types. In
OpenOffice.org 1.0.2 there is only the ServiceManager singleton. From OpenOffice.org 1.1.0, a
singleton /singletons/com.sun.star.util.theMacroExpander has been added, which can
be used to expand macros in configuration files. Other possible singletons can be found in the
IDL reference.

Implementation properties (not yet defined)
These properties customize a certain implementation and are specified in the module descrip-
tion of each component. A module description is an xml-based description of a module (DLL or
jar file) which contains the formal description of one or more components.

Service properties (not yet defined)
These properties can customize a certain service independent from the implementation and are
specified in the IDL specification of a service.
Note that service context properties are different from service properties. Service context prop-
erties are not subject to change and are the same for every instance of the service that shares the
same component context. Service properties are different for each instance and can be changed
at runtime through the xPropertySet interface.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

Note, that in the scheme above, the ComponentContext has a reference to the service manager, but
not conversely.

Besides the interfaces discussed above, the ServiceManager supports the
com.sun.star.lang.XMultiComponentFactory interface.

interface XMultiComponentFactory : com::sun::star::uno::XInterface
{
com: :sun::star::uno: :XInterface createInstanceWithContext (
[in] string aServiceSpecifier,
[in] com::sun::star::uno::XComponentContext Context)
raises (com::sun::star::uno::Exception);

com: :sun::star::uno::XInterface createInstanceWithArgumentsAndContext (
[in] string ServiceSpecifier,
[in] sequence<any> Arguments,
[in] com::sun::star::uno::XComponentContext Context)
raises (com::sun::star::uno::Exception);

sequence< string > getAvailableServiceNames () ;
bi
It replaces the xMultiServiceFactory interface. It has an additional XComponentContext param-
eter for the two object creation methods. This parameter enables the caller to define the component
context that the new instance of the component receives. Most components use their initial compo-
nent context to instantiate new components. This allows for context propagation.

createlnstanceWithContext
(C1)

createlnstanceWithContext
(C1) Instance B

Ctx C1

getsContext ()
>C1

Instance D
Ctx C1

creates a new Context
(ontop of C1)
> (2

Instance A
Ctx C2

createlnstanceWithContext
(C2)

createlnstanceWithContext
(C2)

Hllustration 3.7: Context propagation.

The illustration above shows the context propagation. A user might want a special component to
get a customized context. Therefore, the user creates a new context by simply wrapping an existing
one. The user overrides the desired values and delegates the properties that he is not interested
into the original C1 context.The user defines which context Instance A and B receive. Instance A
and B propagate their context to every new object that they create. Thus, the user has established
two instance trees, the first tree completely uses the context Ctx C1, while the second tree uses Ctx
C2.

93

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html

Availability

The final API for the component context is available in StarOffice 6.0 and OpenOffice 1.0. Use this
APl instead of the API explained in the service manager section. Currently the component context
does not have a persistent storage, so named values can not be added to the context of a deployed
OpenOffice.org. Presently, there is no additional benefit from the new API until there is a future
release.

Compatibility Issues and Migration Path

XComponentContext
ComponentContext O P

getValueByName ()
getServiceManager ()

ServiceManager —O XMultiServiceFactory

DefaultContext —O XMultiComponentFactory

Hllustration 3.8Compromise between service-manger-only und component context
concept

As discussed previously, both concepts are currently used within the office. The serviceManager
supports the interfaces com.sun.star.lang.XMultiServiceFactory and
com.sun.star.lang.XMultiComponentFactory. Calls to the XMultiServiceFactory interface
are delegated to the XMultiComponentFactory interface. The service manager uses its own XCom-
ponentContext reference to fill the missing parameter. The component context of the ServiceM-
anager can be retrieved through the xPropertyset interface as ‘DefaultContext’.

// Query for the XPropertySet interface.
// Note xOfficeServiceManager is the object retrieved by the
// UNO URL resolver
XPropertySet xPropertySet = (XPropertySet)
UnoRuntime.queryInterface (XPropertySet.class, xOfficeServiceManager) ;

// Get the default context from the office server.
Object oDefaultContext = xpropertysetMultiComponentFactory.getPropertyValue ("DefaultContext") ;

// Query for the interface XComponentContext.
xComponentContext = (XComponentContext) UnoRuntime.queryInterface (
XComponentContext.class, objectDefaultContext) ;

This solution allows the use of the same service manager instance, regardless if it uses the old or

new style APL In future, the whole OpenOffice.org code will only use the new API. However, the
old API will still remain to ensure compatibility.

The described compromise has a drawback. The service manager now knows the component context, that
was not necessary in the original design. Thus, every component that uses the old API (plain createIn-
stance ()) breaks the context propagation (see Illustration 3.2). Therefore, it is recommended to use the
new API in every new piece of code that is written.

3.3.3 Using UNO Interfaces

Every UNO object must inherit from the interface com.sun.star.uno.XInterface. Before using
an object, know how to use it and how long it will function. By prescribing XInterface to be the

94 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html

base interface for each and every UNO interface, UNO lays the groundwork for object communica-
tion. For historic reasons, the UNOIDL description of xInterface lists the functionality that is
associated with xInterface in the C++ (or binary UNO) language binding; other language bind-
ings offer similar functionality by different mechanisms:

// module com::sun::star::uno
interface XInterface

{

any querylInterface([in] type aType);

[oneway] void acquire();

[oneway] void release() ;
i
The methods acquire () and release () handle the lifetime of the UNO object by reference
counting. Detailed information about Reference counting is discussed in chapter 3.3.8 Professional
UNO - UNO Concepts - Lifetime of UNO Objects. All current language bindings take care of

acquire () and release () internally whenever there is a reference to a UNO object.

The queryInterface () method obtains other interfaces exported by the object. The caller asks the
implementation of the object if it supports the interface specified by the type argument. The type
parameter must denote a UNO interface type. The call may return with an interface reference of
the requested type or with a void any. In C++ or Java simply test if the result is not equal null.

Unknowingly, we encountered XInterface when the service manager was asked to create a
service instance:

XComponentContext xLocalContext =
com.sun.star.comp.helper.Bootstrap.createInitialComponentContext (null) ;

// initial serviceManager
XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager () ;

// create a urlresolver
Object urlResolver = xLocalServiceManager.createInstanceWithContext (
"com.sun.star.bridge.UnoUrlResolver", xLocalContext);

The IDL specification of xMultiComponentFactory shows:

// module com::sun::star::lang
interface XMultiComponentFactory : com::sun::star::uno::XInterface
{
com: :sun::star::uno: :XInterface createInstanceWithContext (
[in] string aServiceSpecifier,
[in] com::sun::star::uno: :XComponentContext Context
raises (com::sun::star::uno::Exception);

}

The above code shows that createInstanceWithContext () provides an instance of the given
service, but it only returns a com.sun.star.uno.XInterface. This is mapped to java.lang.Object
by the Java UNO binding afterwards.

In order to access a service, you need to know which interfaces the service exports. This informa-
tion is available in the IDL reference. For instance, for the com.sun.star.bridge.UnoUrlRe-
solver service, you learn:

// module com::sun::star::bridge
service UnoUrlResolver: XUnoUrlResolver;

This means the service you ordered at the service manager must support
com.sun.star.bridge.XUnoUrlResolver. Next query the returned object for this interface:

// query urlResolver for its com.sun.star.bridge.XUnoUrlResolver interface
XUnoUrlResolver xUrlResolver = (XUnoUrlResolver)
UnoRuntime.queryInterface (UnoUrlResolver.class, urlResolver);

// test if the interface was available
if (null == xUrlResolver) {
throw new java.lang.Exception (
“Error: UrlResolver service does not export XUnoUrlResolver interface”);
}
// use the interface
Object remoteObject = xUrlResolver.resolve (
“uno:socket,host=0,port=2002;urp;StarOffice.ServiceManager”) ;

95

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

96

For a new-style service like com.sun.star.bridge.UnoUrlResolver, there is a superior way to obtain
an instance of it, see 3.4.1 Professional UNO - UNO Language Bindings - Java Language Binding - Type Mappings
- Mapping of Services and 3.4.2 Professional UNO - UNO Language Bindings - C++ Language Binding - Type
Mappings - Mapping of Services.

The object decides whether or not it returns the interface. You have encountered a bug if the object
does not return an interface that is specified to be mandatory in a service. When the interface refer-
ence is retrieved, invoke a call on the reference according to the interface specification. You can
follow this strategy with every service you instantiate at a service manager, leading to success.

With this method, you may not only get UNO objects through the service manager, but also by
normal interface calls:

// Module com::sun::star::text
interface XTextRange: com::sun::star::uno::XInterface
{

XText getText ()

XTextRange getStart();

}i
The returned interface types are specified in the operations, so that calls can be invoked directly on

the returned interface. Often, an object implementing multiple interfaces are returned, instead of
an object implementing one certain interface.

You can then query the returned object for the other interfaces specified in the given old-style
service, here com.sun.star.drawing.Text.

UNO has a number of generic interfaces. For example, the interface com.sun.star. frame.XCom-
ponentloader:

// module com::sun::star::frame
interface XComponentLoader: com::sun::star::uno::XInterface

{

com: :sun::star::lang: :XComponent loadComponentFromURL([in] string aURL,
[in] string aTargetFrameName,
[in] long nSearchFlags,
[in] sequence<com::sun::star::beans::PropertyValue> aArgs)
raises(com::sun::star::io::IOException,
com: :sun::star::lang::IllegalArgumentException);
}i
It becomes difficult to find which interfaces are supported beside xComponent, because the kind of

returned document (text, calc, draw, etc.) depends on the incoming URL.
These dependencies are described in the appropriate chapters of this manual.

Tools such as the InstanceInspector component is a quick method to find out which interfaces a
certain object supports. The InstanceInspector component comes with the OpenOffice.org SDK
that allows the inspection of a certain object at runtime. Do not rely on implementation details of
certain objects. If an object supports more interfaces than specified in the service description, query
the interface and perform calls. The code may only work for this distinct office version and not
work with an update of the office!

Unfortunately, there may still be bugs in the service specifications. Please provide feedback about missing
interfaces to openoffice.org to ensure that the specification is fixed and that you can rely on the support of this
interface.

There are certain specifications a queryInterface () implementation must not violate:

If queryInterface () on a specific object returned a valid interface reference for a given type, it
must return a valid reference for any successive queryInterface () calls on this object for the
same type.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html

- If queryInterface () on a specific object returned a null reference for a given type, it must
always return a null reference for the same type.

- If queryInterface() on reference A returns reference B, queryInterface () on B for Type A
must return interface reference A or calls made on the returned reference must be equivalent to
calls made on reference A.

. If queryInterface () on areference A returns reference B, queryInterface () on A and B for
XlInterface must return the same interface reference (object identity).

These specifications must not be violated because a UNO runtime environment may choose to
cache queryInterface () calls. The rules are basically identical to the rules of QuerylInterface in
MS COM.

3.3.4 Properties

Properties are name-value pairs belonging to a service and determine the characteristics of an
object in a service instance. Usually, properties are used for non-structural attributes, such as font,
size or color of objects, whereas get and set methods are used for structural attributes like a parent
or sub-object.

In almost all cases, com.sun.star.beans.XPropertySet is used to access properties by name.
Other interfaces, for example, are com. sun.star.beans.XPropertyAccess which is used to set
and retrieve all properties at once or com. sun.star.beans.XMultiPropertySet which is used to
access several specified properties at once. This is useful on remote connections. Additionally,
there are interfaces to access properties by numeric ID, such as com. sun.star.beans.XFastProp-
ertySet.

The following example demonstrates how to query and change the properties of a given text docu-
ment cursor using its XPropertyset interface:

// get an XPropertySet, here the one of a text cursor
XPropertySet xCursorProps = (XPropertySet)
UnoRuntime.queryInterface (XPropertySet.class, mxDocCursor) ;

// get the character weight property

Object aCharWeight = xCursorProps.getPropertyValue ("CharWeight") ;
float fCharWeight = AnyConverter.toFloat (aCharWeight) ;
System.out.println ("before: CharWeight=" + fCharWeight) ;

// set the character weight property to BOLD
xCursorProps.setPropertyValue ("CharWeight", new Float (com.sun.star.awt.FontWeight.BOLD)) ;

// get the character weight property again

aCharWeight = xCursorProps.getPropertyValue ("CharWeight") ;
fCharWeight = AnyConverter.toFloat (aCharWeight) ;
System.out.println("after: CharWeight=" + fCharWeight) ;

A possible output of this code could be:

before: CharWeight=100.0
after: CharWeight=150.0

The sequence of property names must be sorted.

The following example deals with multiple properties at once:

// get an XMultiPropertySet, here the one of the first paragraph

XEnumerationAccess xEnumAcc = (XEnumerationAccess) UnoRuntime.queryInterface (
XEnumerationAccess.class, mxDocText) ;

XEnumeration xEnum = xEnumAcc.createEnumeration () ;

Object aPara = xEnum.nextElement () ;

XMultiPropertySet xParaProps = (XMultiPropertySet) UnoRuntime.queryInterface (
XMultiPropertySet.class, aPara);

// get three property values with a single UNO call

97

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

98

String[] aNames = new String[3];

aNames [0] = "CharColor";

aNames[1l] = "CharFontName";

aNames [2] = "CharWeight";

Object[] aValues = xParaProps.getPropertyValues (aNames) ;

// print the three values

System.out.println ("CharColor=" + AnyConverter.toLong (aValues[0])) ;

System.out.println ("CharFontName=" + AnyConverter.toString(aValues[1l])):;

System.out.println ("CharWeight=" + AnyConverter.toFloat (aValues[2]));

Properties can be assigned flags to determine a specific behavior of the property, such as read-

only, bound, constrained or void. Possible flags are specified in com.sun.star.beans.Proper-
tyAttribute. Read-only properties cannot be set. Bound properties broadcast changes of their

value to registered listeners and constrained properties veto changes to these listeners.

Properties might have a status specifying where the value comes from. See
com.sun.star.beans.XPropertyState. The value determines if the value comes from the object,
a style sheet or if it cannot be determined at all. For example, in a multi-selection with multiple
values within this selection.

The following example shows how to find out status information about property values:

// get an XPropertySet, here the one of a text cursor
XPropertySet xCursorProps = (XPropertySet) UnoRuntime.queryInterface (
XPropertySet.class, mxDocCursor) ;

// insert “first” in NORMAL character weight
mxDocText.insertString (mxDocCursor, "first ", true);
xCursorProps.setPropertyValue ("CharWeight", new Float (com.sun.star.awt.FontWeight.NORMAL)) ;

// append “second” in BODL characer weight

mxDocCursor.collapseToEnd () ;

mxDocText.insertString (mxDocCursor, "second", true);

xCursorProps.setPropertyValue ("CharWeight", new Float (com.sun.star.awt.FontWeight.BOLD)) ;

// try to get the character weight property of BOTH words
mxDocCursor.gotoStart (true) ;
try {
Object aCharWeight = xCursorProps.getPropertyValue ("CharWeight") ;
float fCharWeight = AnyConverter.toFloat (aCharWeight);
System.out.println ("CharWeight=" + fCharWeight) ;
} catch (NullPointerException e) {
System.out.println ("CharWeight property is NULL");
}

// query the XPropertState interface of the cursor properties
XPropertyState xCursorPropsState = (XPropertyState) UnoRuntime.queryInterface (
XPropertyState.class, xCursorProps) ;

// get the status of the character weight property
PropertyState eCharWeightState = xCursorPropsState.getPropertyState ("CharWeight") ;
System.out.print ("CharWeight property state has ");
if (eCharWeightState == PropertyState.AMBIGUOUS_VALUE)
System.out.println("an ambiguous value");
else
System.out.println("a clear value");

The property state of character weight is queried for a string like this:
first second

And the output is:

CharWeight property is NULL
CharWeight property state has an ambiguous value

The description of properties available for a certain object is given by
com.sun.star.beans.XPropertySetInfo. Multiple objects can share the same property informa-
tion for their description. This makes it easier for introspective caches that are used in scripting
languages where the properties are accessed directly, without directly calling the methods of the
interfaces mentioned above.

This example shows how to find out which properties an object provides using
com.sun.star.beans.XPropertySetInfo:

try {

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyAttribute.html

// get an XPropertySet, here the one of a text cursor
XPropertySet xCursorProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, mxDocCursor) ;

// get the property info interface of this XPropertySet
XPropertySetInfo xCursorPropsInfo = xCursorProps.getPropertySetInfol();

// get all properties (NOT the values) from XPropertySetInfo
Property[] aProps = xCursorPropsInfo.getProperties();
int i;
for (i = 0; i < aProps.length; ++i) {
// number of property within this info object
System.out.print ("Property #" + 1i);

// name of property
System.out.print (": Name<" + aProps[i].Name) ;

// handle of property (only for XFastPropertySet)
System.out.print ("> Handle<" + aProps[i].Handle) ;

// type of property
System.out.print ("> " + aProps[i].Type.toString());

// attributes (flags)
System.out.print (" Attributes<");
short nAttribs = aProps[i].Attributes;

if ((nAttribs & PropertyAttribute.MAYBEVOID) != 0)
System.out.print ("MAYBEVOID|") ;

if ((nAttribs & PropertyAttribute.BOUND) != 0)

System.out.print ("BOUND|") ;

if ((nAttribs & PropertyAttribute.CONSTRAINED) != 0)
System.out.print ("CONSTRAINED|") ;

if ((nAttribs & PropertyAttribute.READONLY) != 0)
System.out.print ("READONLY |") ;

if ((nAttribs & PropertyAttribute.TRANSIENT) != 0)
System.out.print ("TRANSIENT|") ;

if ((nAttribs & PropertyAttribute.MAYBEAMBIGUOUS) != 0)
System.out.print ("MAYBEAMBIGUOUS|") ;

if ((nAttribs & PropertyAttribute.MAYBEDEFAULT) != 0)
System.out.print ("MAYBEDEFAULT|") ;

if ((nAttribs & PropertyAttribute.REMOVEABLE) != 0)

System.out.print ("REMOVEABLE|") ;
System.out.println("0>");
}
} catch (Exception e) {
// If anything goes wrong, give the user a stack trace
e.printStackTrace (System.out) ;

}
The following is an example output for the code above. The output shows the names of the text
cursor properties, and their handle, type and property attributes. The handle is not unique, since

the specific object does not implement com.sun.star.beans. XFastPropertySet, so proper handles are
not needed here.

Using default connect string: socket,host=localhost,port=8100

Opening an empty Writer document

Property #0: Name<BorderDistance> Handle<93> Type<long> Attributes<MAYBEVOID|O>

Property #1: Name<BottomBorder> Handle<93> Type<com.sun.star.table.BorderLine> Attributes<MAYBEVOID|0>
Property #2: Name<BottomBorderDistance> Handle<93> Type<long> Attributes<MAYBEVOID|O0>

Property #3: Name<BreakType> Handle<81> Type<com.sun.star.style.BreakType> Attributes<MAYBEVOID|O0>

Property #133: Name<TopBorderDistance> Handle<93> Type<long> Attributes<MAYBEVOID|O0>
Property #134: Name<UnvisitedCharStyleName> Handle<38> =Type<string> Attributes<MAYBEVOID|O0>
Property #135: Name<VisitedCharStyleName> Handle<38> Type<string> Attributes<MAYBEVOID|O0>

In some cases properties are used to specify the options in a sequence of
com.sun.star.beans.PropertyValue. See com.sun.star.view.PrintOptions or
com.sun.star.document.MediaDescriptor for examples properties in sequences. These are not
accessed by the methods mentioned above, but by accessing the sequence specified in the language
binding.

This example illustrates how to deal with sequences of property values:

// create a sequence of PropertyValue
PropertyValue[] aArgs = new PropertyValue[2];

// set name/value pairs (other fields are irrelevant here)

aArgs[0] = new PropertyValue();
aArgs[0] .Name = "FilterName";
aArgs[0] .Value = "HTML (StarWriter)";

99

http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PrintOptions.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XFastPropertySet.html

100

aArgs[1l] = new PropertyValue();
aArgs[l] .Name = "Overwrite";
aArgs[1l] .Value = Boolean.TRUE;

// use this sequence of PropertyValue as an argument

// where a service with properties but witouth any interfaces is specified

com.sun.star.frame.XStorable xStorable = (com.sun.star.frame.XStorable) UnoRuntime.queryInterface (
com.sun.star.frame.XStorable.class, mxDoc) ;

xStorable.storeAsURL ("file:///tmp/devmanual-test.html", aArgs);

Usually the properties supported by an object, as well as their type and flags are fixed over the life-
time of the object. There may be exceptions. If the properties can be added and removed externally,
the interface com.sun.star.beans.XPropertyContainer has to be used. In this case, the fixed
com.sun.star.beans.XPropertySetInfo changes its supplied information over the lifetime of

the object. Listeners for such changes can register at com.sun.star.beans.XPropertyChangeLis-
tener.

If you use a component from other processes or remotely, try to adhere to the rule to use
com.sun.star.beans.XPropertyAccess and com.sun.star.beans.XMultiPropertySet instead
of having a separate call for each single property.

The following diagram shows the relationship between the property-related interfaces.

XPropertyChangelistener
Application

XPropertyStateChangelListener

<<implementation>>

|
: XPropertySetinfoChangelListener
I
1

Property
Setinfo
ChangeEvent

<<struct>>

r—-—

Property == Property

. Setinfo
<<struct>>

<<service>>

—O XPropertySet
PropertyState Property
ChangeEvent ChangeEvent XFastPropertySet
<<struct>> <<struct>> Property .
Set XMultiPropertySet
<<service>>
/I\ /I\ XPropertyAccess
| |
T T s XPropertyState

Hlustration 3.9: Properties

Starting with OpenOffice.org 2.0, interface attributes are comparable in expressiveness to the prop-
erties described above:

A [property] T P (with type T and name P) corresponds to an [attribute] T P.

A [property, readonly] T Pcorresponds toan [attribute, readonly] T P.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XMultiPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html

A [property, bound] T PCOHESpondstoan[attribute, bound] T P.

A [property, maybeambiguous] T PCOHPSpondStOEHI[attribute]
com.sun.star.beans.Ambiguous<T> P.

[\[property, maybedefault] T P(aneSpondstozﬂl[attribute]
com.sun.star.beans.Defaulted<T> P.

A [property, maybevoid] T PCOHESpondStoan[attribute]
com.sun.star.beans.Optional<T> P.

Ak[property, optional] T PCOHESpOHdStOiHI[attribute] T P { get raises
(com.sun.star.beans.UnknownPropertyException); set raises

(com.sun.star.beans.UnknownPropertyException); }.

A [property, constrained] T P correspondstoan [attribute] T P { set raises
(com.sun.star.beans.PropertyVetoException); }.

Interface attributes offer the following advantages compared to properties:

The attributes an object supports follows directly from the description of the interface types the
object supports.

Accessing an interface attribute is type-safe, whereas accessing a property uses the generic any.
This is an advantage mainly in statically typed languages like Java and C++, where accessing an
interface attribute typically also requires less code to be written than for accessing a generic

property.

The main disadvantage is that the set of interface attributes supported by an object is static, so that
scenarios that exploit the dynamic nature of Xxpropertyset, and so on, do not map well to inter-
face attributes. In cases where it might be useful to have all the interface attributes supported by an
object also accessible via xPropertySet etc., the Java and C++ language bindings offer experi-
mental, not yet published support to do just that.See www.openoffice.org to find out more.

3.3.5 Collections and Containers

Collections and containers are concepts for objects that contain multiple sub-objects where the
number of sub-objects is usually not predetermined. While the term collection is used when the
sub-objects are implicitly determined by the collection itself, the term container is used when it is
possible to add new sub-objects and remove existing sub-objects explicitly. Thus, containers add
methods like insert () and remove () to the collection interfaces.

101

- _> ContainerEvent

<<struct>>

-->

_Appllcathn —Q XContainerListener
<<implementation>>
|
|
|
|

-------------- % XContainer
XindexContainer XNameContainer iXHierarchicalNameContainer
XIndexReplace XNameReplace XHierarchicalNameReplace O XEnumeration
AN
|
|
XIndexAccess XNameAccess ? XHierarchicalNameAccess XEnumerationAccess

O XElementAccess

Hlustration 3.10: Interfaces in com. sun.star.container

In general, the OpenOffice.org API collection and container interfaces contain any type that can be
represented by the UNO type any. However, many container instances can be bound to a specific
type or subtypes of this type. This is a runtime and specification agreement, and cannot be checked
at runtime.

The base interface for collections is com.sun.star.container.XElementAccess that determines
the types of the sub-object, if they are determined by the collection, and the number of contained
sub-objects. Based on XElementAccess, there are three main types of collection interfaces:

com.sun.star.container.XIndexAccess
Offers direct access to the sub-objects by a subsequent numeric index beginning with 0.

com.sun.star.container.XNameAccess
Offers direct access to the sub-objects by a unique name for each sub object.

com.sun.star.container.XEnumerationAccess
Creates uni-directional iterators that enumerate all sub-objects in an undefined order.

com.sun.star.container.XIndexAccess is extended by com.sun.star.container.XIndexRe-
place to replace existing sub-objects by index, and com. sun.star.container.XIndexContainer
to insert and remove sub-objects. You can find the same similarity for
com.sun.star.container.XNameAccess and other specific collection types.

102 OpenOffice.org 2.3 Developer's Guide ¢ June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/module-ix.html

All containers support com. sun.star.container.XContainer that has interfaces to register
com.sun.star.container.XContainerListener interfaces. This way it is possible for an applica-
tion to learn about insertion and removal of sub-objects in and from the container.

The com.sun.star.container.XIndexAccess is appealing to programmers because in most cases, it is
easy to implement. But this interface should only be implemented if the collection really is indexed.

Refer to the module com.sun.star.container in the API reference for details about collection
and container interfaces.

The following examples demonstrate the usage of the three main collection interfaces. First, we

iterate through an indexed collection. The index always starts with 0 and is continuous:
// get an XIndexAccess interface from the collection
XIndexAccess xIndexAccess = (XIndexAccess) UnoRuntime.queryInterface (

XIndexAccess.class, mxCollection);

// iterate through the collection by index

int 1i;

for (i = 0; i < xIndexAccess.getCount(); ++i) {
Object aSheet = xIndexAccess.getByIndex (i) ;
Named xSheetNamed = (XNamed) oRuntime.queryInterface (XNamed.class, aSheet);
System.out.println ("sheet #" + i + " is named '" + xSheetNamed.getName() + "'");

}

Our next example iterates through a collection with named objects. The element names are unique
within the collection and case sensitive.

// get an XNameAccess interface from the collection
XNameAccess xNameAccess = (XNameAccess) UnoRuntime.queryInterface (XNameAccess.class, mxCollection);

// get the list of names
String[] aNames = xNameAccess.getElementNames () ;

// iterate through the collection by name
int i;
for (i = 0; i < aNames.length; ++i) {
// get the i-th object as a UNO Any
Object aSheet = xNameAccess.getByName (aNames[i]);

// get the name of the sheet from its XNamed interface
XNamed xSheetNamed = (XNamed) UnoRuntime.queryInterface (XNamed.class, aSheet);
System.out.println("sheet '" + aNames[i] + "' is #" + 1i);
}
The next example shows how we iterate through a collection using an enumerator. The order of the
enumeration is undefined. It is only defined that all elements are enumerated. The behavior is

undefined, if the collection is modified after creation of the enumerator.
// get an XEnumerationAccess interface from the collection
XEnumerationAccess xEnumerationAccess = (XEnumerationAccess) UnoRuntime.queryInterface (

XEnumerationAccess.class, mxCollection);

// create an enumerator
XEnumeration xEnum = xEnumerationAccess.createEnumeration () ;

// iterate through the collection by name

while (xEnum.hasMoreElements()) {
// get the next element as a UNO Any
Object aSheet = xEnum.nextElement () ;

// get the name of the sheet from its XNamed interface
XNamed xSheetNamed = (XNamed) UnoRuntime.queryInterface (XNamed.class, aSheet);
System.out.println("sheet '" + xSheetNamed.getName () + "'");

}

For an example showing the use of containers, see 8.4.1 Text Documents - Overall Document Features

- Styles where a new style is added into the style family paragraphstyles.

103

http://api.openoffice.org/docs/common/ref/com/sun/star/container/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/module-ix.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainer.html

3.3.6 Event Model

Events are a well known concept in graphical user interface (GUI) models, although they can be
used in many contexts. The purpose of events is to notify an application about changes in the
components used by the application. In a GUI environment, for example, an event might be the
click on a button. Your application might be registered to this button and thus be able to execute
certain code when this button is clicked.

The OpenOffice.org event model is similar to the JavaBeans event model. Events in OpenOffice.org
are, for example, the creation or activation of a document, as well as the change of the current
selection within a view. Applications interested in these events can register handlers (listener inter-
faces) that are called when the event occurs. Usually these listeners are registered at the object
container where the event occurs or to the object itself. These listener interfaces are named
X...Listener.

Listener —O XEventListener

<<implementation>>
X...Listener

Special
EventObject _D EventObject

<<struct>> <<struct>>

] [}

! !

| (Broadcaster _O X...Broadcaster
[5

<<implementation>>
XComponent

Illustration 3.11

Event listeners are subclasses of com.sun.star.lang.XEventListener that receives one event by
itself, the deletion of the object to which the listener is registered. On this event, the listener has to
unregister from the object, otherwise it would keep it alive with its interface reference counter.

! Important! Implement the method disposing () to unregister at the object you are listening to and release
@ all other references to this object.

Many event listeners can handle several events. If the events are generic, usually a single callback
method is used. Otherwise, multiple callback methods are used. These methods are called with at
least one argument: com.sun.star.lang.EventObiect. This argument specifies the source of the
event, therefore, making it possible to register a single event listener to multiple objects and still
know where an event is coming from. Advanced listeners might get an extended version of this
event descriptor struct.

3.3.7 Exception Handling
UNO uses exceptions as a mechanism to propagate errors from the called method to the caller. This

error mechanism is preferred instead of error codes (as in MS COM) to allow a better separation of
the error handling code from the code logic. Furthermore, Java, C++ and other high-level program-

104 OpenOffice.org 2.3 Developer's Guide ¢ June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html

ming languages provide an exception handling mechanism, so that this can be mapped easily into
these languages.

In IDL, an exception is a structured container for data, comparable to IDL structs. Exceptions
cannot be passed as a return value or method argument, because the IDL compiler does not allow
this. They can be specified in raise clauses and transported in an any. There are two kinds of
exceptions, user-defined exceptions and runtime exceptions.

User-Defined Exceptions

The designer of an interface should declare exceptions for every possible error condition that might
occur. Different exceptions can be declared for different conditions to distinguish between
different error conditions.

The implementation may throw the specified exceptions and exceptions derived from the specified
exceptions. The implementation must not throw unspecified exceptions, that is, the implementa-
tion must not throw an exception if no exception is specified. This applies to all exceptions except
for RuntimeExceptions, described later.

When a user-defined exception is thrown, the object should be left in the state it was in before the
call. If this cannot be guaranteed, then the exception specification must describe the state of the
object. Note that this is not recommended.

Every UNO IDL exception must be derived from com.sun.star.uno.Exception, whether directly
or indirectly. Its UNO IDL specification looks like this:

module com { module sun { module star { module uno {
exception Exception
{

string Message;

com: :sun: :star::uno: :XInterface Context;

}i
IEER AR VAR Y
The exception has two members:

- The message should contain a detailed readable description of the error (in English), which is
useful for debugging purposes, though it cannot be evaluated at runtime. There is currently no
concept of having localized error messages.

- The Context member should contain the object that initially threw the exception.

The following .IDL file snippet shows a method with a proper exception specification and proper
documentation.

module com { module sun { module star { module beans {

interface XPropertySet: com::sun::star::uno::XInterface

{

/** @returns
the value of the property with the specified name.

@param PropertyName
This parameter specifies the name of the property.

@throws UnknownPropertyException
if the property does not exist.

@throws com::sun::star::uno::lang::WrappedTargetException
if the implementation has an internal reason for the
exception. In this case the original exception
is wrapped into that WrappedTargetException.

*
/
any getPropertyValue([in] string PropertyName)

raises(com::sun::star::beans::UnknownPropertyException,

com: :sun::star::lang: :WrappedTargetException);

105

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html

106

JE A A A

Runtime Exceptions

Throwing a runtime exception signals an exceptional state. Runtime exceptions and exceptions
derived from runtime exceptions cannot be specified in the raise clause of interface methods in
IDL.

These are a few reasons for throwing a runtime exception are:
The connection of an underlying interprocess bridge has broken down during the call.

An already disposed object is called (see com.sun.star.lang.XComponent and the called
object cannot fulfill its specification because of its disposed state.

A method parameter was passed in an explicitly forbidden manner. For instance, a null inter-
face reference was passed as a method argument where the specification of the interface explic-
itly forbids this.

Every UNO call may throw a com.sun.star.uno.RuntimeException, except acquire and release.
This is independent of how many calls have been completed successfully. Every caller should
ensure that its own object is kept in a consistent state even if a call to another object replied with a
runtime exception. The caller should also ensure that no resource leaks occur in these cases. For
example, allocated memory, file descriptors, etc.

If a runtime exception occurs, the caller does not know if the call has been completed successfully
or not. The com.sun.star.uno.RuntimeException is derived from com.sun.star.uno.Excep-
tion. Note, that in the Java UNO binding, the com.sun.star.uno.Exception is derived from
java.lang.Exception, while the com.sun.star.uno.RuntimeException is directly derived from
java.lang. RuntimeException.

A common misuse of the runtime exception is to reuse it for an exception that was forgotten
during interface specification. This should be avoided under all circumstances. Consider, defining
a new interface.

An exception should not be misused as a new kind of programming flow mechanism. It should
always be possible that during a session of a program, no exception is thrown. If this is not the
case, the interface design should be reviewed.

Good Exception Handling

This section provides tips on exception handling strategies. Under certain circumstances, the code
snippets we call bad below might make sense, but often they do not.

Do not throw exceptions with empty messages

Often, especially in C++ code where you generally do not have a stack trace, the message within
the exception is the only method that informs the caller about the reason and origin of the excep-
tion. The message is important, especially when the exception comes from a generic interface
where all kinds of UNO exceptions can be thrown.

When writing exceptions, put descriptive text into them. To transfer the text to another exception,
make sure to copy the text.

Do not catch exceptions without handling them

Many people write helper functions to simplify recurring coding tasks. However, often code will
be written like the following;:

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

// Bad example for exception handling
public static void insertIntoCell (XPropertySet xPropertySet) {

[...]

try {

xPropertySet.setPropertyValue ("CharColor",new Integer (0));

} catch (Exception e) {

}
}
This code is ineffective, because the error is hidden. The caller will never know that an error has
occurred. This is fine as long as test programs are written or to try out certain aspects of the API
(although even test programs should be written correctly). Exceptions must be addressed because

the compiler can not perform correctly. In real applications, handle the exception.

The appropriate solution depends on the appropriate handling of exceptions. The following is the
minimum each programmer should do:

// During early development phase, this should be at least used instead
public static void insertIntoCell (XPropertySet xPropertySet) {
[...]
try {
xPropertySet.setPropertyValue ("CharColor",new Integer(0));
} catch (Exception e) ({
e.dumpStackTrace () ;
}
}
The code above dumps the exception and its stack trace, so that a message about the occurrence of
the exception is received on stderr. This is acceptable during development phase, but it is insuffi-

cient for deployed code. Your customer does not watch the stderr window.

The level where the error can be handled must be determined. Sometimes, it would be better not to
catch the exception locally, but further up the exception chain. The user can then be informed of
the error through dialog boxes. Note that you can even specify exceptions on the main () function:

// this is how the final solution could look like
public static void insertIntoCell (XPropertySet xPropertySet) throws UnknownPropertyException,
PropertyVetoException, IllegalArgumentException, WrappedTargetException {
looo
xPropertySet.setPropertyValue ("CharColor",new Integer (0));
}
As a general rule, if you cannot recover from an exception in a helper function, let the caller deter-

mine the outcome. Note that you can even throw exceptions at the main () method.

3.3.8 Lifetime of UNO Objects

The UNO component model has a strong impact on the lifetime of UNO objects, in contrast to
CORBA, where object lifetime is completely unspecified. UNO uses the same mechanism as Micro-
soft COM by handling the lifetime of objects by reference counting.

Each UNO runtime environment defines its own specification on lifetime management. While in C
++ UNO, each object maintains its own reference count. Java UNO uses the normal Java garbage
collector mechanism. The UNO core of each runtime environment needs to ensure that it upholds
the semantics of reference counting towards other UNO environments.

The last paragraph of this chapter explains the differences between the lifetime of Java and C++
objects in detail.

acquire() and release()

Every UNO interface is derived from com.sun.star.uno.XInterface:

// module com::sun::star::uno
interface XInterface

{

107

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

108

any queryInterface([in] type aType);
[oneway] void acquire();
[oneway] void release();

}i

UNO objects must maintain an internal reference counter. Calling acquire () on a UNO interface
increases the reference count by one. Calling release () on UNO interfaces decreases the refer-
ence count by one. If the reference count drops to zero, the UNO object may be destroyed. Destruc-
tion of an object is sometimes called death of an object or that the object dies. The reference count of
an object must always be non-negative.

Once acquire () is called on the UNO object, there is a reference or a hard reference to the object, as
opposed to a weak reference. Calling release () on the object is often called releasing or clearing
the reference.

The UNO object does not export the state of the reference count, thatis, acquire () and release ()
do not have return values. Generally, the UNO object should not make any assumptions on the
concrete value of the reference count, except for the transition from one to zero.

The invocation of a method is allowed first when acquire () has been called before. For every call
to acquire () , there must be a corresponding release call, otherwise the object leaks.

The UNO Java binding encapsulates acquire () and release () in the
UnoRuntime.queryInterface () call. The same applies to the Reference<> template in C++. As long
as the interface references are obtained through these mechanisms, acquire () and release () donot
have to be called in your programs.

The XComponent Interface

A central problem of reference counting systems is cyclic references. Assume Object A keeps a
reference on object B and B keeps a direct or indirect reference on object A. Even if all the external
references to A and B are released, the objects are not destroyed, which results in a resource leak.

o_
A : B

Hllustration 3.12: Cyclic Reference

In general, a Java developer does not have to be concerned about this kind of issue, as the garbage collector
algorithm detects ring references. However, in the UNO world one never knows, whether object A and
object B really live in the same Java virtual machine. If they do, the ring reference is really garbage collected.
If they do not, the object leaks, because the Java VM is not able to inspect the object outside of the VM for its
references.

In UNO, the developer must explicitly decide when to the break cyclic references. To support this
concept, the interface com.sun.star.lang.XComponent exists. When an XComponent is disposed
of, it can inform other objects that have expressed interest to be notified.

// within the module com::sun::star::lang
// when dispose() is called, previously added XEventListeners are notified
interface XComponent: com::sun::star::uno::XInterface
{
void dispose() ;
void addEventListener([in] XEventListener xListener);
void removeEventListener([in] XEventListener alistener);

}i

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

// BAn XEventListener is notified by calling its disposing() method
interface XEventListener: com::sun::star::uno::XInterface
{

void disposing([in] com::sun::star::lang::EventObject Source);

}i

Other ObjeCtS can add themselves as com.sun.star.lang.XEventListener to an XComponent.
When the dispose () method is called, the object notifies all XEventListeners through the
disposing () method and releases all interface references, thus breaking the cyclic reference.

l

Hlustration 3.13: Object C calls dispose() on XComponent of Object B

o_

—o XComponent
_O

A

>

dispose ()

A disposed object is unable to comply with its specification, so it is necessary to ensure that an
object is not disposed of before calling it. UNO uses an owner/user concept for this purpose. Only
the owner of an object is allowed to call dispose and there can only be one owner per object. The
owner is always free to dispose of the object. The user of an object knows that the object may be
disposed of at anytime. The user adds an event listener to discover when an object is being
disposed. When the user is notified, the user releases the interface reference to the object. In this
case, the user should not call removeEventListener (), because the disposed object releases the
reference to the user.

One major problem of the owner/user concept is that there always must be someone who calls dispose ().
This must be considered at the design time of the services and interfaces, and be specified explicitly.

This solves the problem described above. However, there are a few conditions which still have to
be met.

109

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html

110

C

Hllustration 3.14: B releases all interface references, which leads to destruction of Object A, which then
releases its reference to B, thus the cyclic reference is broken.

If an object is called while it is disposed of, it should behave passively. For instance, if removeLis-
tener () is called, the call should be ignored. If methods are called while the object is no longer
able to comply with its interface specification, it should throw a
com.sun.star.lang.DisposedException, derived from com.sun.star.uno. RuntimeException.
This is one of the rare situations in which an implementation should throw a RuntimeException.
The situation described above can always occur in a multithreaded environment, even if the caller
has added an event listener to avoid calling objects which were disposed of by the owner.

The owner /user concept may not always be appropriate, especially when there is more than one
possible owner. In these cases, there should be no owner but only users. In a multithreaded
scenario, dispose () might be called several times. The implementation of an object should be able
to cope with such a situation.

The xComponent implementation should always notify the disposing () listeners that the object is
being destroyed, not only when dispose () is called, but when the object is deleted. When the
object is deleted, the reference count of the object drops to zero. This may happen when the
listeners do not hold a reference on the broadcaster object.

The XComponent does not have to be implemented when there is only one owner and no further
users.

Children of the XEventListener Interface

The com.sun.star.lang.XEventListener interface is the base for all listener interfaces . This
means that not only xEventListeners, but every listener must implement disposing (), and
every broadcaster object that allows any kind of listener to register, must call disposing () on the
listeners as soon as it dies. However, not every broadcaster is forced to implement the xComponent
interface with the dispose() method, because it may define its own condition when it is disposed.

In a chain of broadcaster objects where every element is a listener of its predecessor and only the
root object is an XComponent that is being disposed, all the other chain links must handle the
disposing () call coming from their predecessor and call disposing () on their registered
listeners.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html

Weak Objects and References

A strategy to avoid cyclic references is to use weak references. Having a weak reference to an object
means that you can reestablish a hard reference to the object again if the object still exists, and
there is another hard reference to it.

In the cyclic reference shown in illustration 3.4: RemoteTVImpl Component, object B could be speci-
fied to hold a hard reference on object A, but object A only keeps a weak reference to B. If object A
needs to invoke a method on B, it temporarily tries to make the reference hard. If this succeeds, it
invokes the method and releases the hard reference afterwards.

To be able to create a weak reference on an object, the object needs to support it explicitly by
exporting the com. sun.star.uno.XWeak interface. The illustration 3.5: The interaction of services that
are needed to initiate a UNO interprocess bridge. The interfaces have been simplified. depicts the UNO
mechanism for weak references.

When an object is assigned to a weak reference, the weak reference calls queryadapter () at the
original object and adds itself (with the com.sun.star.uno.XReference interface) as reference to
the adapter.

XWeak .
— Object

queryAdapter ()

queryAdapter ()

<

XAdapter <>_ Weak XReference
= O— Adapter Reference _Oi

queryAdapted () —o dispose ()

addReference ()
releaseReference ()

Hllustration 3.15: The UNO weak reference mechanism

When a hard reference is established from the weak reference, it calls the queryadapted ()
method at the com. sun.star.uno.XAdapter interface of the adapter object. When the original
object is still alive, it gets a reference for it, otherwise a null reference is returned.

The adapter notifies the destruction of the original object to all weak references which breaks the
cyclic reference between the adapter and weak reference.

4 Writing UNO Components describes the helper classes in C++ and Java that implement a xweak
interface and a weak reference.

Differences Between the Lifetime of C++ and Java Objects

Read 3.4.2 Professional UNO - UNO Language Bindings - C++ Language Binding and 3.4.1 Professional UNO -
UNO Language Bindings - Java Language Binding for information on language bindings, and 4.6 Writing UNO
Components - C++ Component and 4.5.6 Writing UNO Components - Simple Component in Java - Storing the
Service Manager for Further Use about component implementation before beginning this section.

111

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAdapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XReference.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XReference.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XReference.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html

112

The implementation of the reference count specification is different in Java UNO and C++ UNO. In
C++ UNO, every object maintains its own reference counter. When you implement a C++ UNO
object, instantiate it, acquire it and afterwards release it, the destructor of the object is called imme-
diately. The following example uses the standard helper class : : cppu: : OWeakObject and prints a
message when the destructor is called. (ProfUNO/ Lifetime/object_lifetime.cxx)

class MyOWeakObject : public ::cppu::OWeakObject
{

public:
MyOWeakObject () { fprintf(stdout, "constructed\n"); }
~MyOWeakObject () { fprintf(stdout, "destroyed\n"); }

}i

The following method creates a new MyOwWeakObJject, acquires it and releases it for demonstration
purposes. The call to release () immediately leads to the destruction of MyoweakoObject. If the
Reference<> template is used, you do not need to care about acquire () and release ().

void simple object creation and destruction ()

{

// create the UNO object
com: :sun::star::uno::XInterface * p = new MyOWeakObject () ;

// acquire it
p->acquire () ;

// releast it

fprintf (stdout, "before release\n");
p->release () ;

fprintf (stdout, "after release\n");

}
This piece of code produces the following output:

constructed
before release
destroyed
after release

Java UNO objects behave differently, because they are finalized by the garbage collector at a time
of its choosing. com. sun.star.uno.XInterface has no methods in the Java UNO language
binding, therefore no methods need to be implemented, although MyUnoobject implements
XInterface: (ProfUNO/Lifetime/MyUnoObiject.java)

class MyUnoObject implements com.sun.star.uno.XInterface {

public MyUnoObject () {
}

void finalize() {
System.out.println("finalizer called");

}

static void main(String args[]) throws java.lang.InterruptedException {
com.sun.star.uno.XInterface a = new MyUnoObject () ;
a = null;

// ask the garbage collector politely
System.gc () ;
System.runFinalization () ;

System.out.println("leaving") ;
// It is java VM dependent, whether or not the finalizer was called
}

The output of this code depends on the Java VM implementation. The output finalizer called is
not a usual result. Be aware of the side effects when UNO brings Java and C++ together.

When a UNO C++ object is mapped to Java, a Java proxy object is created that keeps a hard UNO
reference to the C++ object. The UNO core takes care of this. The Java proxy only clears the refer-
ence when it enters the finalize () method, thus the destruction of the C++ object is delayed until
the Java VM collects some garbage.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

When a UNO Java object is mapped to C++, a C++ proxy object is created that keeps a hard UNO
reference to the Java object. Internally, the Java UNO bridge keeps a Java reference to the original
Java object. When the C++ proxy is no longer used, it is destroyed immediately. The Java UNO
bridge is notified and immediately frees the Java reference to the original Java object. When the
Java object is finalized is dependent on the garbage collector.

When a Java program is connected to a running OpenOffice.org, the UNO objects in the office
process are not destroyed until the garbage collector finalizes the Java proxies or until the interpro-
cess connection is closed (see 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connec-
tions).

3.3.9 Object Identity

UNO guarantees if two object references are identical, that a check is performed and it always
leads to a correct result, whether it be true or false. This is different from CORBA, where a return
of false does not necessarily mean that the objects are different.

Every UNO runtime environment defines how this check should be performed. In Java UNO, there
is a static areSame () function at the com.sun.star.uno.UnoRuntime class. In C++, the check is
performed with the Reference<>::operator == () function that queries both references for
XInterface and compares the resulting XInterface pointers.

This has a direct effect in the API design. For instance, look at com. sun.star.lang.XComponent:

interface XComponent: com::sun::star::uno::XInterface
{

void dispose();

void addEventListener([in] XEventListener xListener);

void removeEventListener([in] XEventListener alListener);
i
The method removeEventListener () that takes a listener reference, is logical if the implementa-
tion can check for object identity, otherwise it could not identify the listener that has to be
removed. CORBA interfaces are not designed in this manner. They need an object ID, because

object identity is not guaranteed.

3.4 UNO Language Bindings

This chapter documents the mapping of UNO to various programming languages or component
models. This language binding is sometimes called a UNO Runtime Environment (URE). Each
URE needs to fulfill the specifications given in the earlier chapters. The use of UNO services and
interfaces are also explained in this chapter. Refer to 4 Writing UNO Components for information
about the implementation of UNO objects.

Each section provides detail information for the following topics:
Mapping of all UNO types to the programming language types.
Mapping of the UNO exception handling to the programming language.

Mapping of the fundamental object features (querying interfaces, object lifetime, object
identity).

Bootstrapping of a service manager.Other programming language specific material (like core
libraries in C++ UNO).

113

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

Java, C++, OpenOffice.org Basic, and all languages supporting MS OLE automation or the
Common Language Infrastructure (CLI) on the win32 platform are currently supported. In the
future, the number of supported language bindings may be extended.

3.4.1 Java Language Binding

The Java language binding gives developers the choice of using Java or UNO components for client
programs. A Java program can access components written in other languages and built with a
different compiler, as well as remote objects, because of the seamless interaction of UNO bridges.

Java delivers a rich set of classes that can be used within client programs or component implemen-
tations. However, when it comes to interaction with other UNO objects, use UNO interfaces,
because only those are known to the bridge and can be mapped into other environments.

To control the office from a client program, the client needs a Java 1.3 (or later) installation, a free
socket port, and the following jar files juh.jar, jurt.jar, ridl.jar, and unoil.jar. A Java installation on
the server-side is not necessary. A step-by-step description is given in the chapter 2 First Steps

When using Java components, the office is installed with Java support. Also make sure that Java is
enabled: there is a switch that can be set to achieve this in the Tools - Options - OpenOffice.org -
Security dialog. All necessary jar files should have been installed during the OpenOffice.org setup.
A detailed explanation can be found in the chapter 4.5.6 Writing UNO Components - Simple Compo-
nent in Java - Storing the Service Manager for Further Use.

The Java UNO Runtime is documented in the Java UNO Reference which can be found in the
OpenOffice.org Software development Kit (SDK) or on api.openoffice.org.

Getting a Service Manager

Office objects that provide the desired functionality are required when writing a client application
that accesses the office. The root of all these objects is the service manager component, therefore
clients need to instantiate it. Service manager runs in the office process, therefore office must be
running first when you use Java components that are instantiated by the office. In a client-server
scenario, the office has to be launched directly. The interprocess communication uses a remote
protocol that can be provided as a command-line argument to the office:

soffice -accept=socket,host=localhost,port=8100;urp

The client obtains a reference to the global service manager of the office (the server) using a local
com.sun.star.bridge.UnoUrlResolver. The global service manager of the office is used to get
objects from the other side of the bridge. In this case, an instance of the
com.sun.star.frame.Desktop is acquired:

import com.sun.star.uno.XComponentContext;
import com.sun.star.comp.helper.Bootstrap;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.bridge.UnoUrlResolver;
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.beans.XPropertySet

import com.sun.star.uno.UnoRuntime;

XComponentContext xcomponentcontext = Bootstrap.createInitialComponentContext (null);

// create a connector, so that it can contact the office
XUnoUrlResolver urlResolver = UnoUrlResolver.create (xcomponentcontext) ;

Object initialObject = urlResolver.resolve (
"uno:socket,host=localhost,port=8100;urp; StarOffice.ServiceManager") ;

XMultiComponentFactory xOfficeFactory = (XMultiComponentFactory) UnoRuntime.queryInterface (
XMultiComponentFactory.class, initialObject) ;

114 OpenOffice.org 2.3 Developer's Guide ¢ June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html

// retrieve the component context as property (it is not yet exported from the office)

// Query for the XPropertySet interface.

XPropertySet xProperySet = (XPropertySet) UnoRuntime.queryInterface (
XPropertySet.class, xOfficeFactory);

// Get the default context from the office server.
Object oDefaultContext = xProperySet.getPropertyValue ("DefaultContext") ;

// Query for the interface XComponentContext.
XComponentContext xOfficeComponentContext = (XComponentContext) UnoRuntime.queryInterface (
XComponentContext.class, oDefaultContext);

// now create the desktop service

// NOTE: use the office component context here!

Object oDesktop = xOfficeFactory.createInstanceWithContext (
“com.sun.star.frame.Desktop", xOfficeComponentContext);

As the example shows, a local component context is created through the
com.sun.star.comp.helper.Bootstrap class (a Java UNO runtime class). Its implementation
provides a service manager that is limited in the number of services it can create. The names of
these services are:

com.sun.star.lang.ServiceManager
com.sun.star.lang.MultiServiceFactory
com.sun.star.loader.Java
com.sun.star.loader.Java?2
com.sun.star.bridge.UnoUrlResolver
com.sun.star.bridge.BridgeFactory
com.sun.star.connection.Connector
com.sun.star.connection.Acceptor

They are sufficient to establish a remote connection and obtain the fully featured service manager
provided by the office.

The service manager of the local component context could create other components, but this is only possible
if the service manager is provided with the respective factories during runtime. An example that shows how
this works can be found in the implementation of the Bootstrap class in the project javaunohelper.

There is also a service manager that uses a registry database to locate services. It is implemented by the class
com.sun.star.comp.helper.RegistryServiceFactory in the project javaunohelper. However, the implementa-
tion uses a native registry service manager instead of providing a pure Java implementation.

Transparent Use of Office UNO Components

If some client code wants to use office UNO components, then a typical use case is that the client
code first looks for an existing office installation. If an installation is found, the client checks if the
office process is already running. If no office process is running, an office process is started. After
that, the client code connects to the running office using remote UNO mechanisms in order to get
the remote component context of that office. After this, the client code can use the remote compo-
nent context to access arbitrary office UNO components. From the perspective of the client code,
there is no difference between local and remote components.

The bootstrap method

Therefore, the remote office component context is provided in a more transparent way by the
com.sun.star.comp.helper.Bootstrap.bootstrap () method, which bOOtStrapS the component
context from a UNO installation. A simple client application may then look like:

(ProfUNO/ SimpleBootstrap_java/SimpleBootstrap_java.java)

// get the remote office component context

XComponentContext xContext =
com.sun.star.comp.helper.Bootstrap.bootstrap () ;

// get the remote office service manager

XMultiComponentFactory xServiceManager =
xContext.getServiceManager () ;

115

http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Acceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Acceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Acceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Connector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Connector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/Connector.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/BridgeFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/Java2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/Java2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/Java2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/Java.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/Java.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/Java.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/MultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/MultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/MultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html

116

// get an instance of the remote office desktop UNO service
Object desktop = xServiceManager.createInstanceWithContext (

"com.sun.star.frame.Desktop", xContext);
The com.sun.star.comp.helper.Bootstrap.bootstrap () method first bootstraps a local
component context and then tries to establish a named pipe connection to a running office. If no
office is running, an office process is started. If the connection succeeds, the remote component
context is returned.

Note, that the com. sun.star.comp.helper.Bootstrap.bootstrap () method is only available since
OpenOffice.org 1.1.2.

SDK tooling

For convenience, the OpenOffice.org Software Development Kit (SDK) provides some tooling for
writing Java client applications.

One of the requirements for a Java client application is that Java finds the
com.sun.star.comp.helper.Bootstrap class and all the UNO types (for example, UNO inter-
faces) and other Java UNO language binding classes (for example, com.sun.star.uno.AnyCon-
verter) used by the client code. A natural approach would be to add the UNO jar files to the Java
CLASSPATH, but this requires the knowledge of the location of a UNO installation. Other
approaches would be to use the Java extension mechanism or to deploy the jar files containing the
UNO types in the client jar file. Both of those approaches have several drawbacks, the most impor-
tant one is the problem of type conflicts, for example, if a deployed component adds new UNO
types. The SDK tooling therefore provides a more dynamic approach, namely a customized class
loader. The customized class loader has an extended search path, which also includes the path to a
UNO installation. The UNO installation is auto-detected on the system by using a search algo-
rithm.

Customized Class Loader

The concept is based on the requirement that every class that uses UNO types, or other classes that
come with a office installation, gets loaded by a customized class loader. This customized class
loader recognizes the location of a UNO installation and loads every class from a jar or class file
that belongs to the office installation. That means that the customized class loader must be instanti-
ated and initialized before the first class that uses UNO is loaded.

The SDK tooling allows to build a client jar file, which can be invoked by the following:

java -jar SimpleBootstrap java.jar

The client jar file contains the following files:

META-INF/MANIFEST.MF
com/sun/star/lib/loader/InstallationFinder$StreamGobbler.class
com/sun/star/lib/loader/InstallationFinder.class
com/sun/star/lib/loader/Loader$CustomURLClassLoader.class
com/sun/star/lib/loader/Loader.class
com/sun/star/lib/loader/WinRegKey.class
com/sun/star/lib/loader/WinRegKeyException.class
win/unowinreg.dll

SimpleBootstrap java.class

A client application created by using the SDK tooling will automatically load the class
com.sun.star.lib.loader.Loader, which sets up the customized class loader for loading the
application class. In order to achieve this, the SDK tooling creates a manifest file that contains the
following Main-Class entry

Main-Class: com.sun.star.lib.loader.Loader

OpenOffice.org 2.3 Developer's Guide « June 2007

The customized loader needs a special entry in the manifest file that specifies the name of the class
that contains the client application code:

Name: com/sun/star/lib/loader/Loader.class
Application-Class: SimpleBootstrap java

The implementation of com.sun.star.lib.loader.Loader.main reads this entry and calls the
main method of the application class after the customized class loader has been created and set up
properly. The SDK tooling will take over the task of writing the correct manifest entry for the
application class.

Finding a UNO Installation

The location of a UNO installation can be specified by the Java system property
com.sun.star.lib.loader.unopath. The system property can be passed to the client application
by using the -D flag, e.g

java -Dcom.sun.star.lib.loader.unopath=/opt/OpenOffice.org/program -jar
SimpleBootstrap java.jar

In addition, it is possible to specify a UNO installation by setting the environment variable
UNO_PATH to the program directory of a UNO installation, for example,

setenv UNO PATH /opt/OpenOffice.org/program

This does not working with Java 1.3.1 and Java 1.4, because environment variables are not supported in
those Java versions.

If no UNO installation is specified by the user, the default UNO installation on the system is
searched. The search algorithm is platform dependent.

On the Windows platform, the UNO installation is found by reading the default value of the key
'Software\OpenOffice.org\UNO\InstallPath’from the root key HKEY_CURRENT_USER in the
Windows Registry. If this key is missing, the key is read from the root key
HKEY_LOCAL_MACHINE. One of those keys is always written during the installation of an
office. In a single user installation the key is written to HKEY_CURRENT_USER, in a multi-user
installation of an administrator to HKEY_LOCAL_MACHINE. Note that the default installation is
the last installed office, but with the restriction, that HKEY_CURRENT_USER has a higher priority
than HKEY_LOCAL_MACHINE. The reading from the Windows Registry requires that the native
library unowinreg.d11 is part of the application jar file or can be found in the
java.library.path. The SDK tooling automatically will put the native library into the jar file
containing the client application.

On the Unix/Linux platforms, the UNO installation is found from the PATH environment variable.
Note that for Java 1.3.1 and Java 1.4, the installation is found by using the which command,
because environment variables are not supported with those Java versions. Both methods require
that the soffice executable or a symbolic link is in one of the directories listed in the PATH envi-
ronment variable. For older versions than OpenOffice.org 2.0 the above described methods may
fail. In this case the UNO installation is taken from the . sversionrc file in the user’s home direc-
tory. The default installation is the last entry in the . sversionrc file which points to a UNO instal-
lation. Note that there won't be a . sversionrc file with OpenOffice.org 2.0 anymore.

Handling Interfaces

The service manager is created in the server process and the Java UNO remote bridge ensures that
its XInterface is transported back to the client. A Java proxy object is constructed that can be used
by the client code. This object is called the initial object, because it is the first object created by the
bridge. When another object is obtained through this object, then the bridge creates a new proxy.

117

118

For instance, if a function is called that returns an interface. That is, the original object is actually
running in the server process (the office) and calls to the proxy are forwarded by the bridge. Not
only interfaces are converted, but function arguments, return values and exceptions.

The Java bridge maps objects on a per-interface basis, that is, in the first step only the interface is
converted that is returned by a function described in the API reference. For example, if you have
the service manager and use it to create another component, you initially get a
com.sun.star.uno.XInterface:

XInterface xint= (XInterface)

serviceManager.createInstance (“com.sun.star.bridge.oleautomation.Factory”) ;

You know from the service description that Factory implements a com.sun.star.lang.XMulti-
ServiceFactory interface. However, you cannot cast the object or call the interface function on the
object, since the object is only a proxy for just one interface, XInterface. Therefore, you have to
use a mechanism that is provided with the Java bridge that generates proxy objects on demand.
For example:

XMultiServiceFactory xfac = (XMultiServiceFactory) UnoRuntime.queryInterface (
XMultiServiceFactory.class, xint);

If xint is a proxy, then queryInterface () hands out another proxy for xMultiServiceFactory

provided that the original object implements it. Interface proxies can be used as arguments in func-

tion calls on other proxy objects. For example:

// client side
// obj is a proxy interface and returns another interface through its func() method
XSomething ret = obj.func();

// anotherObject is a proxy interface, too. Its method func(XSomething arg)
// takes the interface ret obtained from obj
anotherObject. func (ret) ;

In the server process, the obj object would receive the original ref object as a function argument.

It is also possible to have Java components on the client side. As well, they can be used as function
arguments, then the bridge would set up proxies for them in the server process.

Not all language concepts of UNO have a corresponding language element in Java. For example,
there are no structs and all-purpose out parameters. Refer to 3.4.1 Professional UNO - UNO
Language Bindings - Java Language Binding - Type Mappings for how those concepts are mapped.

Interface handling normally involves the ability of com.sun.star.uno.XInterface to acquire and
release objects by reference counting. In Java, the programmer does not bother with acquire ()
and release (), since the Java UNO runtime automatically acquires objects on the server side
when com. sun.star.uno.UnoRuntime.queryInterface () is used. Conversely, when the Java
garbage collector deletes your references, the Java UNO runtime releases the corresponding office
objects. If a UNO object is written in Java, no reference counting is used to control its lifetime. The
garbage collector takes that responsibility.

Sometimes it is necessary to find out if two interfaces belong to the same object. In Java, you would
compare the references with the equality operator '==". This works as long as the interfaces refer to
a local Java object. Often the interfaces are proxies and the real objects reside in a remote process.
There can be several proxies that belong to the same object, because objects are bridged on a per-
interface basis. Those proxies are Java objects and comparing their references would not establish
them as parts of the same object. To determine if interfaces are part of the same UNO object, use
the method areSame () at the com.sun.star.uno.UnoRuntime class:

static public boolean areSame (Object objectl, Object object2)

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

Type Mappings

Mapping of Simple Types
The following table shows the mapping of simple UNO types to the corresponding Java types.

119

120

UNO Java

void void

boolean boolean

byte byte

short short

unsigned short short

long int

unsigned long int

hyper long

unsigned hyper long

float float

double double

char char

string java.lang.String

type com.sun.star.uno.Type
any java.lang.Object/com.sun.star.uno.Any

The mapping between the values of the corresponding UNO and Java types is obvious, except for
a few cases that are explained in the following sections:

Mapping of Unsigned Integer Types

An unsigned UNO integer type encompasses the range from 0 to 2" ? 1, inclusive, while the corre-
sponding signed Java integer type encompasses the range from ?2"" ' to 2V’ ' ? 1, inclusive (where
Nis 16, 32, or 64 for unsigned short, unsigned long, Oor unsigned hyper, respectively). The
mapping is done modulo N, that is: 0 is mapped to 0; 2’ "' ? 1 is mapped to 2¥7'? 1; 27 'is
mapped to ?2V""; and 2V ? 1 is mapped to ? 1.

Users should be careful when using any of the deprecated UNO unsigned integer types. A user is
responsible for correctly interpreting values of signed Java integer types as unsigned integer values
in such cases.

Mapping of String

The mapping between the UNO string type and java.lang.String is straightforward, except
for three details:

Only non-null references to java.lang.String are allowed in the context of UNO.

The length of a string that can be represented by a java.lang.String object is limited. It is an
error to use a longer UNO string value in the context of the Java language binding.

An object of type java.lang.String can represent an arbitrary sequence of UTF-16 code units,
whereas a value of the UNO string type is an arbitrary sequence of Unicode scalar values.
This only matters in so far as some individual UTF-16 code units (namely the individual high-
and low-surrogate code points in the range D800 DFFF) have no corresponding Unicode scalar
values, and are thus forbidden in the context of UNO. For example, the Java string "\uD800" is
illegal in this context, while the string "\ub800\uDc00" would be legal. See www.unicode.org for
more information on the details of Unicode.

OpenOffice.org 2.3 Developer's Guide « June 2007

Mapping of Type

The Java class com. sun.star.uno. Type is used to represent the UNO type type; only non-null
references to com.sun.star.uno. Type are valid. (It is a historic mistake that com.sun.star.Type
is not final. You should never derive from it in your code.)

In many places in the Java UNO runtime, there are convenience functions that take values of type
java.lang.Class where conceptually a value of com. sun.star.uno.Type would be expected. For
example, there are two overloaded versions of the method com. sun.star.uno.Uno-
Runtime.queryInterface, one with a parameter of type com. sun.star.uno.Type and one with a
parameter of type java.lang.Class. See the documentation of com. sun.star.uno. Type for the
details of how values of java.lang.Class are interpreted in such a context.

Mapping of Any

There is a dedicated com. sun.star.uno.Any type, but it is not always used. An any in the API
reference is represented by a java.lang.0Object in Java UNO. An Object reference can be used to
refer to all possible Java objects. This does not work with primitive types, but if you need to use
them as an any, there are Java wrapper classes available that allow primitive types to be used as
objects. Also, a Java Object always brings along its type information by means of an instance of
java.lang.Class. Therefore a variable declared as:

Object ref;

can be used with all objects and its type information is available by calling:

ref.getClass () ;

Those qualities of Object are sufficient to replace the Any in most cases. Even Java interfaces
generated from IDL interfaces do not contain Anys, instead Object references are used in place of
Anys. Cases where an explicit Any is needed to not loose information contain unsigned integer
types, all interface types except the basic xInterface, and the void type.

However, implementations of those interfaces must be able to deal with real Anys that can also be passed by
means of Object references.

To facilitate the handling of the Any type, use the com. sun.star.uno.AnyConverter class. It is
documented in the Java UNO reference. The following list sums up its methods:

static boolean isArray(java.lang.Object object)

static boolean isBoolean(java.lang.Object object)

static boolean isByte (java.lang.Object object)

static boolean isChar (java.lang.Object object)

static boolean isDouble (java.lang.Object object)

static boolean isFloat(java.lang.Object object)

static boolean isInt(java.lang.Object object)

static boolean isLong(java.lang.Object object)

static boolean isObject(java.lang.Object object)

static boolean isShort(java.lang.Object object)

static boolean isString(java.lang.Object object)

static boolean isType (java.lang.Object object)

static boolean isVoid(java.lang.Object object)

static java.lang.Object toArray(java.lang.Object object)
static boolean toBoolean(java.lang.Object object)

static byte toByte(java.lang.Object object)

static char toChar (java.lang.Object object)

static double toDouble (java.lang.Object object)

static float toFloat(java.lang.Object object)

static int toInt(java.lang.Object object)

static long tolong(java.lang.Object object)

static java.lang.Object toObject(Type type, java.lang.Object object)
static short toShort(java.lang.Object object)

static java.lang.String toString(java.lang.Object object)
static Type toType(java.lang.Object object)

The Java com.sun.star.uno.Any is needed in situations when the type needs to be specified
explicitly. Assume there is a C++ component with an interface function which is declared in
UNOIDL as:

121

122

//UNOIDL
void foo (any arg);

The corresponding C++ implementation could be:

void foo (const Anyé& arg)

{
const Type& t = any.getValueType () ;
if (t == cppu::UnoType< XReference >::get())
{

Reference<XReference> myref = *reinterpret cast<const Reference<XReference>*>(arg.getValue()):

}

In the example, the any is checked if it contains the expected interface. If it does, it is assigned
accordingly. If the any contained a different interface, a query would be performed for the
expected interface. If the function is called from Java, then an interface has to be supplied that is an
object. That object could implement several interfaces and the bridge would use the basic XInter-
face. If this is not the interface that is expected, then the C++ implementation has to call query-
Interface to obtain the desired interface. In a remote scenario, those queryInterface () calls
could lead to a noticeable performance loss. If you use a Java Any as a parameter for foo (), the
intended interface is sent across the bridge.

It is a historic mistake that com.sun.star.uno.Any is not final. You should never derive from it in
your code.

Mapping of Sequence Types

A UNO sequence type with a given component type is mapped to the Java array type with corre-
sponding component type.

UNO sequence<long> is mapped to Java int[].
UNO sequence< sequence<long> >isrnappedt0]avaint[][L

Only non-null references to those Java array types are valid. As usual, non-null references to other
Java array types that are assignment compatible to a given array type can also be used, but doing
SO can cause java.lang.ArrayStoreExceptions. In Java, the maximal length of an array is
limited; therefore, it is an error if a UNO sequence that is too long is used in the context of the Java
language binding.

Mapping of Enum Types

An UNO enum type is mapped to a public, final Java class with the same name, derived from the
class com. sun.star.uno.Enum. Only non-null references to the generated final classes are valid.

The base class com. sun.star.uno.Enum declares a protected member to store the actual value, a
protected constructor to initialize the value and a public getvalue () method to get the actual
value. The generated final class has a protected constructor and a public method getbefault ()
that returns an instance with the value of the first enum member as a default. For each member of
a UNO enum type, the corresponding Java class declares a public static member of the given Java
type that is initialized with the value of the UNO enum member. The Java class for the enum type
has an additional public method fromInt () that returns the instance with the specified value. The
following IDL definition for com.sun.star.uno.TypeClass

module com { module sun { module star { module uno {

enum TypeClass {
INTERFACE,
SERVICE,
IMPLEMENTATION,
STRUCT,
TYPEDEF,

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html

is mapped to:
package com.sun.star.uno;

public final class TypeClass extends com.sun.star.uno.Enum {
private TypeClass (int value) {
super (value) ;

}

public static TypeClass getDefault () {
return INTERFACE;
}

public static final TypeClass INTERFACE = new TypeClass (0);
public static final TypeClass SERVICE = new TypeClass (1) ;

public static final TypeClass IMPLEMENTATION = new TypeClass(2);
public static final TypeClass STRUCT = new TypeClass(3);

public static final TypeClass TYPEDEF = new TypeClass (4);

public static TypeClass fromInt (int value) {
switch (value) {
case 0:
return INTERFACE;
case 1:
return SERVICE;
case 2:
return IMPLEMENTATION;
casel 3¢
return STRUCT;
case 4:
return TYPEDEF;

Mapping of Struct Types

A plain UNO struct type is mapped to a public Java class with the same name. Only non-null refer-
ences to such a class are valid. Each member of the UNO struct type is mapped to a public field
with the same name and corresponding type. The class provides a default constructor which
initializes all members with default values, and a constructor which takes explicit values for all
struct members. If a plain struct type inherits from another struct type, the generated class extends
the class of the inherited struct type.

module com { module sun { module star { module chart {

struct ChartDataChangeEvent: com::sun::star::lang::EventObject {
ChartDataChangeType Type;
short StartColumn;
short EndColumn;
short StartRow;
short EndRow;

is mapped to:
package com.sun.star.chart;

public class ChartDataChangeEvent extends com.sun.star.lang.EventObject {
public ChartDataChangeType Type;
public short StartColumn;
public short EndColumn;
public short StartRow;
public short EndRow;

public ChartDataChangeEvent () {
Type = ChartDataChangeType.getDefault () ;
}

public ChartDataChangeEvent (
Object Source, ChartDataChangeType Type,
short StartColumn, short EndColumn, short StartRow, short EndRow)

super (Source) ;

123

this.Type = Type;
this.StartColumn = StartColumn;
this.EndColumn = EndColumn;
this.StartRow = StartRow;
this.EndRow = EndRow;

}

Similar to a plain struct type, a polymorphic UNO struct type template is also mapped to a Java
class. The only difference is how struct members with parametric types are handled, and this
handling in turn differs between Java 1.5 and older versions.

Take, for example, the polymorphic struct type template:
module com { module sun { module star { module beans {

struct Optional<T> {
boolean IsPresent;
T Value;

In Java 1.5, a polymorphic struct type template with a list of type parameters is mapped to a
generic Java class with a corresponding list of unbounded type parameters. For
com.sun.star.beans.Optional, that means that the corresponding Java 1.5 class looks something
like the following example:

package com.sun.star.beans;
public class Optional<T> {
public boolean IsPresent;
public T Value;
public Optional() {}
public Optional (boolean IsPresent, T Value) {
this.IsPresent = IsPresent;
this.Value = Value;

}

Instances of such polymorphic struct type templates map to Java 1.5 in a natural way. For example,
UNO optional<string> maps to Java Optional<String>. However, UNO type arguments that
would normally map to primitive Java types map to corresponding Java wrapper types instead:

+ boolean maps to java.lang.Boolean;

- Dbyte mapsto java.lang.Byte;

. short and unsigned short map to java.lang.Short;
. longand unsigned long map to java.lang.Integer;
. hyper and unsigned hyper map to java.lang.Long;

- float mapsto java.lang.Float;

- double maps to java.lang.Double,

- char maps to java.lang.Character.

For example, UNO Optional<long> maps to Java Optional<Integer>. Also note that UNO type
arguments of both any and com.sun.star.uno.XInterface map to java.lang.Object, and thus,
for example, both Optional<any>and Optional<XInterface> map to Java Optional<Object>.

Still, there are a few problems and pitfalls when dealing with parametric members of default-
constructed polymorphic struct type instances:

- One problem is that such members are initialized to null by the default constructor, but nul1l is
generally not a legal value in the context of Java UNO, except for values of any or interface
type. For example, new Optional<PropertyValue> () .Value is of type

124 OpenOffice.org 2.3 Developer's Guide ¢ June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html

com.sun.star.beans.PropertyValue (a struct type), but is a null reference. Similarly, new
Optional<Boolean> () .Value is also a null reference (instead of a reference to Boolean.FALSE,
say). The chosen solution is to generally allow null references as values of Java class fields that
correspond to parametric members of polymorphic UNO struct types. However, to avoid any
problems, it is a good idea to not rely on the default constructor in such situations, and instead
initialize any problematic fields explicitly. (Note that this is not really a problem for optional,
as Optional<T>() .IsPresent will always be false for a default-constructed instance and
thus, because of the documented conventions for com.sun.star.beans.Optional, the actual
contents of value should be ignored, anyway; in other cases, like with
com.sun.star.beans.Ambiguous, this can be a real issue, however.)

Another pitfall is that a parametric member of type any of a default-constructed polymorphic
struct type instance (think new Optional<Object>().Valuein Java 1.5, Optional<Any> o;
o.Value in C++) has different values in the Java language binding and the C++ language
binding. In Java, it contains a null reference of type xInterface (i.e., the Java value null),
whereas in C++ it contains void. Again, to avoid any problem:s, it is best not to rely on the
default constructor in such situations.

In Java versions prior to 1.5, which do not support generics, a polymorphic struct type template is
mapped to a plain Java class in such a way that any parametric members are mapped to class
fields of type java.lang.Object. This is generally less favorable than using generics, as it reduces
type-safety, but it has the advantage that it is compatible with Java 1.5 (actually, a single Java class
file is generated for a given UNO struct type template, and that class file works with both Java 1.5
and older versions). In a pre-1.5 Java, the Optional example will look something like the
following:

package com.sun.star.beans;

public class Optional {
public boolean IsPresent;
public Object Value;

public Optional() {}

public Optional (boolean IsPresent, Object Value) {
this.IsPresent = IsPresent;
this.Value = Value;

}

How java.lang.Object is used to represent values of arbitrary UNO types is detailed as follows:

Values of the UNO types boolean, byte, short, long, hyper, float, double, and char are
represented by non-null references to the corresponding Java types java.lang.Boolean,
java.lang.Byte, java.lang.Short, java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,and java.lang.Character.

Values of the UNO types unsigned short, unsigned long, and unsigned hyper are repre-
sented by non-null references to the corresponding Java types java.lang.Short,
java.lang.Integer, and java.lang.Long. Whether a value of such a Java type corresponds to
a signed or unsigned UNO type must be deducible from context.

Values of the UNO types string, type, any, and the UNO sequence, enum, struct, and inter-
face types (which all map to Java reference types) are represented by their standard Java
mappings.

The UNO type void and UNO exception types cannot be used as type arguments of instanti-
ated polymorphic struct types.

This is similar to how java.lang.Object is used to represent values of the UNO any type. The
difference is that there is nothing like com. sun. star.uno.any here, which is used to disambiguate
those cases where different UNO types map to the same subclass of java.lang.Object. Instead,

125

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Ambiguous.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Ambiguous.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Ambiguous.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html

126

here it must always be deducible from context exactly which UNO type a given Java reference
represents.

The problems and pitfalls mentioned for Java 1.5, regarding parametric members of default-
constructed polymorphic struct type instances, apply for older Java versions as well.

Mapping of Exception Types
A UNO exception type is mapped to a public Java class with the same name. Only non-null refer-

ences to such a class are valid.

There are two UNO exceptions that are the base for all other exceptions. These are the
com.sun.star.uno.Exception and com.sun.star.uno.RuntimeException that are inherited by
all other exceptions. The corresponding exceptions in Java inherit from Java exceptions:

module com { module sun { module star { module uno {

exception Exception {
string Message;
XInterface Context;

}i
exception RuntimeException {

string Message;
XInterface Context;

The com.sun.star.uno.Exception inJava:

package com.sun.star.uno;

public class Exception extends java.lang.Exception {
public Object Context;

public Exception() {}

public Exception (String Message) {
super (Message) ;

}

public Exception (String Message, Object Context) {
super (Message) ;
this.Context = Context;

}

The com.sun.star.uno.RuntimeException in Java:

package com.sun.star.uno;

public class RuntimeException extends java.lang.RuntimeException {
public Object Context;

public RuntimeException() {}

public RuntimeException (String Message) {
super (Message) ;

}

public RuntimeException (String Message, Object Context) {
super (Message) ;
this.Context = Context;

}

As shown, the Message member has no direct counterpart in the respective Java class. Instead, the
constructor argument Message is used to initialize the base class, which is a Java exception. The
message is accessible through the inherited getMessage () method. All other members of a UNO
exception type are mapped to public fields with the same name and corresponding Java type. A
generated Java exception class always has a default constructor that initializes all members with
default values, and a constructor which takes values for all members.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html

If an exception inherits from another exception, the generated class extends the class of the inher-
ited exception.

Mapping of Interface Types

A UNO interface type is mapped to a public Java interface with the same name. Unlike for Java
classes that represent UNO sequence, enum, struct, and exception types, a null reference is actually
a legal value for a Java interface that represents a UNO interface type the Java null reference
represents the UNO null reference.

If a UNO interface type inherits one ore more other interface types, the Java interface extends the
corresponding Java interfaces.

The UNO interface type com.sun.star.uno.XInterface is special: Only when that type is used
as a base type of another interface type is it mapped to the Java type com.sun.star.uno.XInter-
face. In all other cases (when used as the component type of a sequence type, as a member of a
struct or exception type, or as a parameter or return type of an interface method) it is mapped to
java.lang.Object. Nevertheless, valid Java values of that type are only the Java null reference
and references to those instances of java.lang.0Object that implement
com.sun.star.uno.XInterface.

A UNO interface attribute of the form

[attribute] Type Name {
get raises (ExceptionGl, ..., ExceptionGM);
set raises (ExceptionS1l, ..., ExceptionSM);

i
is represented by two Java interface methods

Type getName () throws ExceptionGl, ..., ExceptionGM;

void setName (Type value) throws ExceptionSl, ..., ExceptionSM;

If the attribute is marked readonly, then there is no set method. Whether or not the attribute is
marked bound has no impact on the signatures of the generated Java methods.

A UNO interface method of the form

Type0 name ([in] Typel argl, [out] Type2 arg2, [inout] Type3 arg3) raises (Exceptionl, ..., ExceptionN);

is represented by a Java interface method

TypeO name (Typel argl, Type2[] arg2, Type3[] arg3) throws Exceptionl, ..., ExceptionN;

Whether or not the UNO method is marked oneway has no impact on the signature of the gener-
ated Java method. As can be seen, out and inout parameters are handled specially. To help
explain this, take the example UNOIDL definitions

struct FooStruct ({
long nval;
string strval;

bi

interface XFoo {

string funcOne ([in] string value);

FooStruct funcTwo ([inout] FooStruct wvalue) ;

sequence<byte> funcThree ([out] sequence<byte> value);
i
The semantics of a UNO method call are such that the values of any in or inout parameters are
passed from the caller to the callee, and, if the method is not marked oneway and the execution
terminated successfully, the callee passes back to the caller the return value and the values of any
out or inout parameters. Thus, the handling of in parameters and the return value maps naturally
to the semantics of Java method calls. UNO out and inout parameters, however, are mapped to
arrays of the corresponding Java types. Each such array must have at least one element (i.e., its
length must be at least one; practically, there is no reason why it should ever be larger). Therefore,
the Java interface corresponding to the UNO interface xFoo looks like the following;:

127

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

public interface XFoo extends com.sun.star.uno.XInterface ({

String funcOne (String value) ;
FooStruct funcTwo (FooStruct[] wvalue);
byte[] funcThree (byte[][] value);

}

This is how Foostruct would be mapped to Java:

public class FooStruct {
public int nval;
public String strval;

public FooStruct () {
strval="";

}

public FooStruct (int nval,
this.nval = nval;
this.strval = strval;

String strval) {

}

When providing a value as an inout parameter, the caller has to write the input value into the
element at index zero of the array. When the function returns successfully, the value at index zero
reflects the output value, which may be the unmodified input value, a modified copy of the input
value, or a completely new value. The object obj implements xFoo:

// calling the interface in Java

obj.funcOne (null) ; //
obj.funcOne ("") ; //
FooStruct[] inoutstruct= new FooStruct[1l];

obj.funcTwo (inoutstruct) ; //
inoutstruct[0]= new FooStruct(); //
obj.funcTwo (inoutstruct) ; //

error, String value is null

OK

error, inoutstruct[0] is null
now we initialize inoutstruct[0]

OK

When a method receives an argument that is an out parameter, upon successful return, it has to
provide a value by storing it at index null of the array.

// method implementations of interface XFoo
public String funcOne(/*in*/ String value) ({
assert value != null;

// otherwise, it is a bug of the caller

return null; // error; instead use: return "";
}
public FooStruct funcTwo (/*inout*/ FooStruct[] value) {
assert value != null && value.length >= 1 && value[0] != null;
value[0] = null; // error; instead use: value[0] = new FooStruct();
return null; // error; instead use: return new FooStruct() ;
}
public byte[] funcThree (/*out*/ byte[][] value) {
assert value != null && value.length >= 1;
value[0] = null; // error; instead use: value[0] = new byte[0];
return null; // error; instead use: return new byte[O0];

}

Mapping of UNOIDL Typedefs

UNOIDL typedefs are not visible in the Java language binding. Each occurrence of a typedef is
replaced with the aliased type when mapping from UNOIDL to Java.

Mapping of Individual UNOIDL Constants
An individual UNOIDL constant

module example {
const long USERFLAG = 1;

}i

is mapped to a public Java interface with the same name:
package example;

public interface USERFLAG ({

int value = 1;

}

128 OpenOffice.org 2.3 Developer's Guide ¢ June 2007

Note that the use of individual constants is deprecated.

Mapping of UNOIDL Constant Groups
A UNOIDL constant group

module example {
constants User {
const long FLAGL
const long FLAG2
const long FLAG3

LI
N

}i
is mapped to a public Java interface with the same name:
package example;
public interface User ({

int FLAG1

int FLAG2
int FLAG3

7

I
w N =

}

Each constant defined in the group is mapped to a field of the interface with the same name and
corresponding type and value.

Mapping of UNOIDL Modules

A UNOIDL module is mapped to a Java package with the same name. This follows from the fact
that each named UNO and UNOIDL entity is mapped to a Java class with the same name.
(UNOIDL uses :: to separate the individual identifiers within a name, as in

com::sun::star::uno , whereas UNO itself and Java bothuse . ,asin com.sun.star.uno ;
therefore, the name of a UNOIDL entity has to be converted in the obvious way before it can be
used as a name in Java.) UNO and UNOIDL entities not enclosed in any module (that is, whose
names do not containany . or :: ,respectively), are mapped to Java classes in an unnamed
package.

Mapping of Services

A new-style services is mapped to a public Java class with the same name. The class has one or
more public static methods that correspond to the explicit or implicit constructors of the service.

For a new-style service with a given interface type XIfc, an explicit constructor of the form
name ([in] Typel argl, [in] Type2 arg2) raises (Exceptionl, ..., ExceptionN);

is represented by the Java method

public static XIfc name (com.sun.star.uno.XComponentContext context, Typel argl, Type2 arg2)
throws Exceptionl, ..., ExceptionN { ... }

A UNO rest parameter (any. . .) is mapped to a Java rest parameter (java.lang.Object...)in
Java 1.5, and to java.lang.Object [] in older versions of Java.

If a new-style service has an implicit constructor, the corresponding Java method is of the form
public static XIfc create(com.sun.star.uno.XComponentContext context) { ... }

The semantics of both explicit and implicit service constructors in Java are as follows:

The first argument to a service constructor is always a com. sun.star.uno.XComponentCon-
text, which must be non-null. Any further arguments are used to initialize the created service
(see below).

129

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

130

The service constructor first uses
com.sun.star.uno.XComponentContext:getServiceManager to obtain a service manager (a
com.sun.star.lang.XMultiComponentFactory) from the given component context.

The service constructor then uses
com.sun.star.lang.XMultiComponentFactory:createInstanceWithArgumentsAndContext

to create a service instance, passing it the list of arguments (without the initial XxComponentCon-
text). If the service constructor has a single rest parameter, its sequence of any values is used
directly, otherwise the given arguments are made into a sequence of any values. In the case of
an implicit service constructor, no arguments are passed, and
com.sun.star.lang.XMultiComponentFactory:createlnstanceWithContext is used
instead.

If any of the above steps fails with an exception that the service constructor may throw
(according to its exception specification), the service constructor also fails by throwing that
exception. Otherwise, if any of the above steps fails with an exception that the service
constructor may not throw, the service constructor instead fails by throwing a
com.sun.star.uno.DeploymentException. Finally, if no service instance could be created
(because either the given component context has no service manager, or the service manager
does not support the requested service), the service constructor fails by throwing a
com.sun.star.uno.DeploymentException. The net effect is that a service constructor either
returns a non-null instance of the requested service, or throws an exception; a service
constructor will never return a null instance.

Old-style services are not mapped into the Java language binding.

Mapping of Singletons
A new-style singleton of the form
singleton Name: XIfc;

is mapped to a public Java class with the same name. The class has a single method

public static XIfc get (com.sun.star.uno.XComponentContext context) { ... }

The semantics of such a singleton getter method in Java are as follows:

The com.sun.star.uno.XComponentContext argument must be non-null.

The singleton getter uses com.sun.star.uno.XComponentContext:getValueByName to obtain
the singleton instance (within the /singletons/ name space).

If no singleton instance could be obtained, the singleton getter fails by throwing a
com.sun.star.uno.DeploymentException. The net effect is that a singleton getter either
returns the requested non-null singleton instance, or throws an exception; a singleton getter will
never return a null instance.

Old-style singletons are not mapped into the Java language binding.

Inexact approximation of UNO Value Semantics

Some UNO types that are generally considered to be value types are mapped to reference types in
Java. Namely, these are the UNO types string, type, any, and the UNO sequence, enum, struct,
and exception types. The problem is that when a value of such a type (a Java object) is used

as the value stored in an any;
as the value of a sequence component;

as the value of a struct or exception member;

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getValueByName
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getValueByName
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getValueByName
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager

as the value of an interface attribute;

as an argument or return value in an interface method invocation;
as an argument in a service constructor invocation;

as a raised exception;

then Java does not create a clone of that object, but instead shares the object via multiple references
to it. If the object is now modified through any one of its references, all other references observe the
modification, too. This violates the intended value semantics.

The solution chosen in the Java language binding is to forbid modification of any Java objects that
are used to represent UNO values in any of the situations listed above. Note that for Java objects
that represent values of the UNO type string, or a UNO enum type, this is trivially warranted, as
the corresponding Java types are immutable. This would also hold for the UNO type type, if the
Java class com. sun.star.Type were final.

In the sense used here, modifying a Java object A includes modifying any other Java object B that is
both (1) reachable from A by following one or more references, and (2) used to represent a UNO
value in any of the situations listed above. For a Java object that represents a UNO any value, the
restriction to not modify it only applies to a wrapping object of type com.sun.star.uno.Any
(which should really be immutable), or to an unwrapped object that represents a UNO value of
type string or type, or of a sequence, enum, struct or exception type.

Note that the types java.lang.Boolean, java.lang.Byte, java.lang.Short,
java.lang.Integer, java.lang.Long, java.lang.Float, java.lang.Double, and
java.lang.Character, used to represent certain UNO values as any values or as parametric
members of instantiated polymorphic struct types, are immutable, anyway, and so need not be
considered specially here.

3.4.2 C++ Language Binding

This chapter describes the UNO C++ language binding. It provides an experienced C++
programmer the first steps in UNO to establish UNO interprocess connections to a remote
OpenOffice.org and to use its UNO objects.

Library Overview

Illustration 3.8Compromise between service-manger-only und component context concept gives an over-
view about the core libraries of the UNO component model.

131

132

C++ Components

A4

cppuhelper (C++)

\ 4

msci_uno.dll (C) l Jl[in ked
0

libsunpro5_uno.so (C)

cppu (C)

libgcc2_uno.so (C)

L1111

sal (C)

A

salhelper (C++) Compiler

Operating system

Hlustration 3.16: Shared Libraries for C++ UNO

These shared libraries can be found in the <officedir>/program folder of your OpenOffice.org instal-
lation. The label (C) in the illustration above means C linkage and (C++) means C++ linkage. For
all libraries, a C++ compiler to build is required.

The basis for all UNO libraries is the sal library. It contains the system abstraction layer (sal) and
additional runtime library functionality, but does not contain any UNO-specific information. The
commonly used C-functions of the sal library can be accessed through C++ inline wrapper classes.
This allows functions to be called from any other programming language, because most program-
ming languages have some mechanism to call a C function.

The salhelper library is a small C++ library which offers additional runtime library functionality,
that could not be implemented inline.

The cppu (C++ UNO) library is the core UNO library. It offers methods to access the UNO type
library, and allows the creation, copying and comparing values of UNO data types in a generic
manner. Moreover, all UNO bridges (= mappings + environments) are administered in this library.

The examples msci_uno.dll, libsunpro5_uno.so and libgcc2_uno.so are only examples for language
binding libraries for certain C++ compilers.

The cppuhelper library is a C++ library that contains important base classes for UNO objects and
functions to bootstrap the UNO core. C++ Components and UNO programs have to link the
cppuhelper library.

OpenOffice.org 2.3 Developer's Guide « June 2007

All the libraries shown above will be kept compatible in all future releases of UNO. You will be
able to build and link your application and component once, and run it with the current and later
versions of OpenOffice.org.

System Abstraction Layer

C++ UNO client programs and C++ UNO components use the system abstraction layer (sal) for
types, files, threads, interprocess communication, and string handling. The sal library offers oper-
ating system dependent functionality as C functions. The aim is to minimize or to eliminate oper-
ating system dependent #ifdef in libraries above sal. Sal offers high performance access because
sal is a thin layer above the API offered by each operating system.

In OpenOffice.org GUI APIs are encapsulated in the vcl library.

Sal exports only C symbols. The inline C++ wrapper exists for convenience. Refer to the UNO C++
reference that is part of the OpenOffice.org SDK or in the References section of udk.openoffice.org to
gain a full overview of the features provided by the sal library. In the following sections, the C++
wrapper classes will be discussed. The sal types used for UNO types are discussed in section 3.4.2
Professional UNO - UNO Language Bindings - C++ Language Binding - Type Mappings. If you want to
use them, look up the names of the appropriate include files in the C++ reference.

File Access

The classes listed below manage platform independent file access. They are C++ classes that call
corresponding C functions internally.

osl::FileBase
osl::Volumelnfo
osl::FileStatus
osl::File
osl::Directoryltem
osl::Directory

An unfamiliar concept is the use of absolute filenames throughout the whole APL In a multi-
threaded program, the current working directory cannot be relied on, thus relative paths must be
explicitly made absolute by the caller.

Threadsafe Reference Counting

The functions osl incrementInterlockedCount () and osl decrementInterlockedCount () in
the global C++ namespace increase and decrease a 4-byte counter in a threadsafe manner. This is
needed for reference counted objects. Many UNO APIs control object lifetime through refcounting.
Since concurrent incrementing the same counter does not increase the reference count reliably,
these functions should be used. This is faster than using a mutex on most platforms.

133

Threads and Thread Synchronization

The class osl::Thread is meant to be used as a base class for your own threads. Overwrite the run ()
method.

The following classes are commonly used synchronization primitives:
osl::Mutex
- osl:Condition

- osl:Semaphore

Socket and Pipe

The following classes allow you to use interprocess communication in a platform independent
manner:

. osl:Socket

- osl:Pipe

Strings

The classes rtl::OString (8-bit, encoded) and rtl::OUString (16-bit, UTF-16) are the base-string
classes for UNO programs. The strings store their data in a heap memory block. The string is
refcounted and incapable of changing, thus it makes copying faster and creation is an expensive
operation. An OUString can be created using the static function OUString: :createFromASCII ()
or it can be constructed from an 8-bit string with encoding using this constructor:

OUString(const sal Char * value,
sal Int32 length,
rtl TextEncoding encoding,
sal uInt32 convertFlags = OSTRING TO OUSTRING CVTFLAGS);
It can be converted into an 8-bit string, for example, for printf () using the rtl::0UStringTo-

ostring () function that takes an encoding, such as RTL_TEXTENCODING_ASCII_US.

For fast string concatenation, the classes rtl::OStringBuffer and rtl::OUStringBuffer should be used,
because they offer methods to concatenate strings and numbers. After preparing a new string
buffer, use the makeStringAndClear () method to create the new OUString or 0String. The
following example illustrates this:

sal Int32 =
double pi = 3.

=]

42;
14159;

// create a buffer with a suitable size, rough guess is sufficient
// stringbuffer extends if necessary
OUStringBuffer buf(128);

// append an ascii string
buf.appendAscii("pi (here ");

// numbers can be simply appended

buf.append(pi);

// RTL_CONSTASCII_STRINGPARAM ()

// lets the compiler count the stringlength, so this is more efficient than
// the above appendAscii call, where the length of the string must be calculated at
// runtime

buf.appendAscii (RTL_CONSTASCII STRINGPARAM (") multiplied with "));
buf.append(n);

buf.appendAscii (RTL CONSTASCII_ STRINGPARAM(" gives "));

buf.append((double) (n * pi));

buf.appendAscii (RTL CONSTASCII STRINGPARAM("."));

// now transfer the buffer into the string.

// afterwards buffer is empty and may be reused again !
OUString string = buf.makeStringAndClear () ;

134 OpenOffice.org 2.3 Developer's Guide * June 2007

// You could of course use the OStringBuffer directly to get an OString
OString oString = rtl::0UStringToOString(string , RTL_TEXTENCODING ASCII_US

// just to print something
printf("%s\n" ,oString.getStr());

Establishing Interprocess Connections

Any language binding supported by UNO establishes interprocess connections using a local
service manager to create the services necessary to connect to the office. Refer to chapter 3.3.1

)i

Professional UNO - UNO Concepts - UNO Interprocess Connections for additional information. The
following client program connects to a running office and retrieves the com.sun.star.lang.XMul-

tiServiceFactory in C++: (ProfUNO/CppBinding/ office_connect.cxx)

#include <stdio.h>

#include <cppuhelper/bootstrap.hxx>
#include <com/sun/star/bridge/XUnoUrlResolver.hpp>
#include <com/sun/star/lang/XMultiServiceFactory.hpp>

using namespace com::sun::star::uno;
using namespace com::sun::star::lang;
using namespace com::sun::star::bridge;
using namespace rtl;

using namespace cppu;

int main()
{
// create the initial component context
Reference< XComponentContext > rComponentContext =
defaultBootstrap_InitialComponentContext () ;

// retrieve the service manager from the context
Reference< XMultiComponentFactory > rServiceManager =
rComponentContext->getServiceManager () ;

// instantiate a sample service with the service manager.
Reference< XInterface > rInstance =
rServiceManager->createInstanceWithContext (
OUString: :createFromAscii ("com.sun.star.bridge.UnoUrlResolver"),
rComponentContext);

// Query for the XUnoUrlResolver interface
Reference< XUnoUrlResolver > rResolver(rInstance, UNO_QUERY);

if(! rResolver.is())
{
printf("Error: Couldn't instantiate com.sun.star.bridge.UnoUrlResolver service\n"
return 1;
}
try
{
// resolve the uno-URL
rInstance = rResolver->resolve(OUString::createFromAscii (
"uno:socket, host=localhost,port=2002;urp;StarOffice.ServiceManager"));
if(! rInstance.is())
{
printf ("StarOffice.ServiceManager is not exported from remote process\n");
return 1;
}
// query for the simpler XMultiServiceFactory interface, sufficient for scripting

Reference< XMultiServiceFactory > rOfficeServiceManager (rInstance, UNO_QUERY) ;

if(! rOfficeServiceManager.is())

{
printf ("XMultiServiceFactory interface is not exported\n");
return 1;

}

printf ("Connected sucessfully to the office\n");
}
catch(Exception &e)
{
0String o = OUStringToOString(e.Message, RTL TEXTENCODING ASCII US);
printf("Error: %s\n", o.pData->buffer);
return 1;
}

return 0;

)i

135

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html

136

Transparent Use of Office UNO Components

When writing C++ client applications, the office component context can be obtained in a more
transparent way. For more details see section 3.4.1 Professional UNO - UNO Language Bindings -
Java Language Binding - Transparent Use of Office UNO Components.

The bootstrap function

Also for C++, a bootstrap function is provided, which bootstraps the component context from a
UNO installation. An example for a simple client application shows the following code snipplet:
(ProfUNO/SimpleBootstrap_cpp/SimpleBootstrap_cpp.cxx)

// get the remote office component context
Reference< XComponentContext > xContext (::cppu::bootstrap());

// get the remote office service manager
Reference< XMultiComponentFactory > xServiceManager (
xContext->getServiceManager ());

// get an instance of the remote office desktop UNO service
// and query the XComponentLoader interface
Reference < XComponentLoader > xComponentLoader (

xServiceManager->createInstanceWithContext (OUString(

RTL CONSTASCII USTRINGPARAM("com.sun.star.frame.Desktop")),

xContext), UNO QUERY THROW) ;
The : :cppu: :bootstrap () function is implemented in a similar way as the Java
com.sun.star.comp.helper.Bootstrap.bootstrap () method. It first bootstraps a local compo-
nent context by calling the : : cppu: :defaultBootstrap_InitialComponentContext () function
and then tries to establish a named pipe connection to a running office by using the
com.sun.star.bridge.UnoUrlResolver service. If no office is running, an office process is

started. If the connection succeeds, the remote component context is returned.

The : :cppu: :bootstrap () function is only available since OpenOffice.org 2.0.

SDK tooling

For convenience , the OpenOffice.org Software Development Kit (SDK) provides some tooling for
writing C++ client applications.

Application Loader

A C++ client application that uses UNO is linked to the C++ UNO libraries, which can be found in
the program directory of a UNO installation. When running the client application, the C++ UNO
libraries are found only, if the UNO program directory is included in the paTH (Windows) or

LD LIBRARY PATH (Unix/Linux) environment variable.

As this requires the knowledge of the location of a UNO installation, the SDK provides an applica-
tion loader (unoapploader.exe for Windows, unoapploader for Unix/Linux), which detects a
UNO installation on the system and adds the program directory of the UNO installation to the
PATH / LD_LIBRARY_ PATH environment variable. After that, the application process is loaded and
started, whereby the new process inherits the environment of the calling process, including the
modified PATH / LD_LIBRARY PATH environment variable.

The SDK tooling allows to build a client executable file (e.g. SimpleBootstrap cpp for
Unix/Linux), which can be invoked by

./SimpleBootstrap cpp

OpenOffice.org 2.3 Developer's Guide « June 2007

In this case, the simpleBootstrap cpp executable is simply the renamed unoapploader execut-
able. All the application code is part of a second executable file, which must have the same name as
the first executable, but prefixed by a underscore ’_’; that means in the example above the second
executable is named SimpleBootstrap cpp.

On the Unix/Linux platforms the application loader writes error messages to the stderr stream.
On the Windows platform error messages are written to the error file <application name>-
error.log in the application’s executable file directory. If this fails, the error file is written to the
directory designated for temporary files.

Finding a UNO Installation

A UNO installation can be specified by the user by setting the UNO_PATH environment variable to
the program directory of a UNO installation, e.g.

setenv UNO PATH /opt/OpenOffice.org/program
If no UNO installation is specified by the user, the default installation on the system is taken.

On the Windows platform, the default installation is read from the default value of the key "Soft-
ware\OpenOffice.org\UNO\InstallPath” from the root key HKEY_CURRENT_USER in the
Windows Registry. If this key is missing, the key is read from the root key
HKEY_LOCAL_MACHINE.

On the Unix/Linux platforms, the default installation is found from the PATH environment vari-
able. This requires that the soffice executable or a symbolic link is in one of the directories listed
in the PATH environment variable.

Type Mappings

Mapping of Simple Types
The following table shows the mapping of simple UNO types to the corresponding C++ types.

137

138

UNO C++

void void
boolean sal Bool
byte sal_Int8
short sal Intlé6

unsigned short

sal uIntle

long sal Int32

unsigned long sal uInt32

hyper sal Int64

unsigned hyper sal uInto4

float float

double double

char sal Unicode

string rtl::0UString

type com::sun::star::uno::Type
any com::sun::star::uno::Any

For historic reasons, the UNO type boolean is mapped to some C++ type sal_Bool, which has
two distinct values sal_False and sal True, and which need not be the C++ bool type. The
mapping between the values of UNO boolean and sal_False and sal_True is straightforward,
but it is an error to use any potential value of sal_Bool that is distinct from both sal_False and
sal_True.

The UNO integer types are mapped to C++ integer types with ranges that are guaranteed to be at
least as large as the ranges of the corresponding UNO types. However, the ranges of the C++ types
might be larger, in which case it would be an error to use values outside of the range of the corre-
sponding UNO types within the context of UNO. Currently, it would not be possible to create C++
language bindings for C++ environments that offer no suitable integral types that meet the
minimal range guarantees.

The UNO floating point types float and double are mapped to C++ floating point types float
and double, which must be capable of representing at least all the values of the corresponding
UNO types. However, the C++ types might be capable of representing more values, for which it is
implementation-defined how they are handled in the context of UNO. Currently, it would not be
possible to create C++ language bindings for C++ environments that offer no suitable f1oat and
double types.

The UNO char type is mapped to the integral C++ type sal_Unicode, which is guaranteed to at
least encompass the range from 0 to 65535. Values of UNO char are mapped to values of

sal Unicode in the obvious manner. If the range of sal Unicode is larger, it is an error to use
values outside of that range.

For the C++ typedef types sal Bool,sal Int8,sal Intl6,sal Int32,sal Int64,and

sal Unicode, it is guaranteed that no two of them are synonyms for the same fundamental C++
type. This guarantee does not extend to the three types sal uInt8, sal ulIntl6,and sal uInt32,
however.

Mapping of String

The mapping between the UNO string type and rtl::0UString is straightforward, except for
two details:

The length of a string that can be represented by an rt1::0UString object is limited. It is an
error to use a longer UNO string value in the context of the C++ language binding.

OpenOffice.org 2.3 Developer's Guide « June 2007

- An object of type rt1::0UString can represent an arbitrary sequence of UTF-16 code units,
whereas a value of the UNO string type is an arbitrary sequence of Unicode scalar values.
This only matters in so far as some individual UTF-16 code units (namely the individual high-
and low-surrogate code points in the range D800 DFFF) have no corresponding Unicode scalar
values, and are thus forbidden in the context of UNO. For example, the C++ string

static sal Unicode const chars[] = { 0xD800 };
rtl::0UString (chars, 1);

is illegal in this context, while the string

static sal Unicode const chars[] = { 0xD800, 0xDC00 };

rtl::0UString (chars, 2);

would be legal. See www.unicode.org for more information on the details of Unicode.

Mapping of Type

The UNO type type is mapped to com: :sun: :star: :uno: : Type. It holds the name of a type and
the com.sun.star.uno.TypeClass. The type allows you to obtain a
com::sun::star::uno::TypeDescription that contains all the information defined in the IDL.
For a given UNO type, a corresponding com: : sun: : star: : Type instance can be obtained through
the cppu::UnoTxpe class template:

// Get the UNO type long:
com::sun::star::uno::Type longType = cppu::UnoType< sal_Int32 >::get();

// Get the UNO type char:
com: :sun::star::uno: :Type charTpye = cppu::UnoType< cppu::UnoCharType >::get();

// Get the UNO type string:
com: :sun::star::uno::Type stringType = cppu::UnoType< rtl::0UString >::get();

// Get the UNO interface type com.sun.star.container.XEnumeration:
com: :sun::star::uno::Type enumerationType =

cppu: :UnoType< com::sun::star::container::XEnumeration >::get();
Some C++ types that represent UNO types cannot be used as C++ template arguments, or ambigu-
ously represent more than one UNO type, so there are special C++ types cppu: : UnoVoidType,
cppu: :UnoUnsignedShortType, cppu: : UnoCharType, and cppu: : UnoSequenceType that can be
used as arguments for cppu: : UnoType in those cases.

The overloaded getCppuType function was an older mechanism to obtain
com: :sun::star::uno::Type instances. It is deprecated now (certain uses of getCppuType in
template code would not work as intended), and cppu: : UnoType should be used instead.

Mapping of Any

The IDL any is mapped to com::sun::star::uno::Any. It holds an instance of an arbitrary UNO type.
Only UNO types can be stored within the any, because the data from the type library are required
for any handling.

A default constructed Any contains the void type and no value. You can assign a value to the Any
using the operator <<= and retrieve a value using the operator >>=.

// default construct an any
Any any;

sal _Int32 n = 3;

// Store the value into the any
any <<= n;

// extract the value again
sal_Int32 n2;

any >>= n2;

assert(n2 == n);

assert(3 == n2);

139

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html

140

The extraction operator >>= carries out widening conversions when no loss of data can occur, but
data cannot be directed downward. If the extraction was successful, the operator returns

sal True, otherwise sal False.

Any any;

sal_Intlé n = 3;
any <<= n;

sal Int8 aByte = 0;
sal Intl6 aShort =

0;
sal_Int32 alLong = 0;

// this will succeed, conversion from intl6 to int32 is OK.
assert (any >>= along);
assert(3 == along);

// this will succeed, conversion from intlé to intl6é is OK
assert (any >>= aShort);
assert(3 == aShort

// the following two assertions will FAIL, because conversion
// from intl6 to int8 may involve loss of data..

// Even if a downcast is possible for a certain value, the operator refuses to work

assert (any >>= aByte);

assert(3 == aByte);

Instead of using the operator for extracting, you can also get a pointer to the data within the any.
This may be faster, but it is more complicated to use. With the pointer, care has to be used during
casting and proper type handling, and the lifetime of the Any must exceed the pointer usage.

Any a = ...;

if (a.getTypeClass() == TypeClass LONG && 3 == *(sal Int32 *)a.getValue())

{
}

You can also construct an Any from a pointer to a C++ UNO type that can be useful. For instance:

Any foo ()
{
sal Int32 i = 3;
if(...)
i=..;
return Any(&i, cppu::UnoType< sal Int32 >::get());

Mapping of Struct Types

A plain UNO struct type is mapped to a C++ struct with the same name. Each member of the UNO
struct type is mapped to a public data member with the same name and corresponding type. The C
++ struct provides a default constructor which initializes all members with default values, and a
constructor which takes explicit values for all members. If a plain struct type inherits from another
struct type, the generated C++ struct derives from the C++ struct corresponding to the inherited
UNO struct type.

A polymorphic UNO struct type template with a list of type parameters is mapped to a C++ struct
template with a corresponding list of type parameters. For example, the C++ template corre-
sponding to com.sun.star.beans.Optional looks something like

template< typename T > struct Optional ({

sal_Bool IsPresent;

T Value;

Optional () : IsPresent(sal False), Value() {}

Optional (sal Bool theIsPresent, T const & theValue): IsPresent (thelIsPresent), Value(theValue) {}
}i

As can be seen in the example above, the default constructor uses default initialization to give
values to any parametric data members. This has a number of consequences:

- Some compilers do not implement default initialization correctly for all types. For example,
Microsoft Visual C++ .NET 2003 leaves objects of primitive types uninitialized, instead of zero-

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Optional.html

initializing them. (Which means, for example, that after Optional<sal_ Int32> o; the expres-
sion o.Value has an undefined value, instead of being zero.)

The default value of a UNO enum type is its first member. A (deprecated) feature of UNO
enum types is to give specific numeric values to individual members. Now, if a UNO enum
type whose first member has a numeric value other than zero is used as the type of a parametric
member, default-initializing that member will give it the numeric value zero, even if zero does
not correspond to the default member of the UNO enum type (it need not even correspond to
any member of the UNO enum type).

Another pitfall is that a parametric member of type any of a default-constructed polymorphic
struct type instance (think optional<any> o; o.Value in C++, new

Optional<Object> () .Value in Java 1.5) has different values in the C++ language binding and
the Java language binding. In C++, it contains void, whereas in Java it contains a null reference
of type xInterface. To avoid any problems, it is best not to rely on the default constructor in
such situations.

On some platforms, the C++ typedef types sal_ulInt16 (representing the UNO type unsigned
short) and sal_Unicode (representing the UNO type char) are synonyms for the same funda-
mental C++ type. This could lead to problems when either of those types is used as a type argu-
ment of a polymorphic struct type. The chosen solution is to generally forbid the (deprecated)
UNO types unsigned short, unsigned long, and unsigned hyper as type arguments of poly-
morphic struct types.

getCppuType (static_cast< com::sun::star::beans::0ptional< sal Unicode > >(0)

and

getCppuType (static_cast< com::sun::star::beans::0ptional< sal_uIntlé > >(0)

cannot return different data for the two different UNO types (as the two function calls are to the
same identical function on those platforms). The chosen solution is to generally forbid the (depre-
cated) UNO types unsigned short, unsigned int, and unsigned long as type arguments of
polymorphic struct types.

Mapping of Interface Types

A value of a UNO interface type (which is a null reference or a reference to an object implementing
the given interface type) is mapped to the template class:

template< class t >

com: :sun::star::uno::Reference< t >

The template is used to get a type safe interface reference, because only a correctly typed interface
pointer can be assigned to the reference. The example below assigns an instance of the desktop
service to the rDesktop reference:

// the xSMgr reference gets constructed somehow

{

// construct a deskop object and acquire it
Reference< XInterface > rDesktop = xSMgr->createlnstance (
OUString: :createFromAscii ("com.sun.star.frame.Desktop"”)) ;

// reference goes out of scope now, release is called on the interface

}

The constructor of Reference calls acquire () on the interface and the destructor calls release ()
on the interface. These references are often called smart pointers. Always use the Reference
template consistently to avoid reference counting bugs.

The rReference class makes it simple to invoke queryInterface () for a certain type:
// construct a deskop object and acquire it

Reference< XInterface > rDesktop = xSMgr->createlnstance (
OUString: :createFromAscii ("com.sun.star.frame.Desktop")) ;

141

http://com.sun.star.frame.Desktop/
http://com.sun.star.frame.Desktop/
http://com.sun.star.frame.Desktop/

142

// query it for the XFrameLoader interface
Reference< XFrameLoader > rLoader(rDesktop , UNO_QUERY) ;

// check, if the frameloader interface is supported
if (rLoader.is())

{

// now do something with the frame loader
}

The UNO_QUERY is a dummy parameter that tells the constructor to query the first constructor argu-
ment for the XFrameLoader interface. If the queryInterface () returns successfully, it is assigned
to the rLoader reference. You can check if querying was successful by calling is () on the new
reference.

Methods on interfaces can be invoked using the operator ->:

xSMgr->createInstance(...);

The operator ->() returns the interface pointer without acquiring it, that is, without incre-
menting the refcount.

If you need the direct pointer to an interface for some purpose, you can also call get () at the reference class.

You can explicitly release the interface reference by calling clear () at the reference or by assigning
a default constructed reference.

You can check if two interface references belong to the same object using the operator ==.

Mapping of Sequence Types
An IDL sequence is mapped to:

template< class t >
com: :sun: :star::uno: :Sequence< t >

The sequence class is a reference to a reference counted handle that is allocated on the heap.

The sequence follows a copy-on-modify strategy. If a sequence is about to be modified, it is
checked if the reference count of the sequence is 1. If this is the case, it gets modified directly,
otherwise a copy of the sequence is created that has a reference count of 1.

A sequence can be created with an arbitrary UNO type as element type, but do not use a non-UNO
type. The full reflection data provided by the type library are needed for construction, destruction
and comparison.

You can construct a sequence with an initial number of elements. Each element is default
constructed.

{
// create an integer sequence with 3 elements,
// elements default to zero.
Sequence< sal_Int32 > seqInt(3);

// get a read/write array pointer (this method checks for
// the refcount and does a copy on demand) .
sal Int32 *pArray = seqlnt.getArray();

// if you know, that the refocunt is one

// as in this case, where the sequence has just been

// constructed, you could avoid the check,

// which is a C-call overhead,

// by writing sal Int32 *pArray = (sal_Int32*) segInt.getConstArray();

// modify the members
pArray[0] 4;
pArray[1l] 59
pArray([2] 35

OpenOffice.org 2.3 Developer's Guide « June 2007

You can also initialize a sequence from an array of the same type by using a different constructor.
The new sequence is allocated on the heap and all elements are copied from the source.

{
sal_Int32 sourceArray([3] = {3,5,3};

// result is the same as above, but we initialize from a buffer.
Sequence< sal Int32 > seqInt(sourceArray , 3);

}
Complex UNO types like structs can be stored within sequences, too:
{

// construct a sequence of Property structs,

// the structs are default constructed

Sequence< Property > seqProperty(2);
seqgProperty[0] .Name = OUString::createFromAscii("A");

seqProperty[0] .Handle = 0;
segProperty[l].Name = OUString::createFromAscii("B");
segProperty[1l] .Handle = 1;

// copy construct the sequence (The refcount is raised)
Sequence< Property > segProperty2 = segProperty;

// access a sequence
for(sal Int32 i = 0 ; i < segProperty.getLength() ; i ++
{
// Please NOTE : segProperty.getArray() would also work, but

// it is more expensive, because a
// unnessecary copy construction
// of the sequence takes place.

printf ("%d\n" , seqgProperty.getConstArray() [i].Handle);
}

The size of sequences can be changed using the realloc () method, which takes the new number
of elements as a parameter. For instance:

// construct an empty sequence
Sequence < Any > anySequence;

// get your enumeration from somewhere
Reference< XEnumeration > rEnum = ...;

// iterate over the enumeration
while (rEnum->hasMoreElements ())

{
anySequence.realloc(anySequence.getLength() + 1);
anySequence [anySequence.getLength () -1] = rEnum->nextElement () ;
)
The above code shows an enumeration is transformed into a sequence,using an inefficient method.
The realloc () default constructs a new element at the end of the sequence. If the sequence is

shrunk by realloc, the elements at the end are destroyed.

The sequence is meant as a transportation container only, therefore it lacks methods for efficient
insertion and removal of elements. Use a C++ Standard Template Library vector as an interme-
diate container to manipulate a list of elements and finally copy the elements into the sequence.

Sequences of a specific type are a fully supported UNO type. There can also be a sequence of
sequences. This is similar to a multidimensional array with the exception that each row may vary
in length. For instance:

{
sal Int32 a[] = { 1,2,3 }, bl] = {4,5,6}, c
Sequence< Sequence< sal Int32 > > aaSeq (3

[1 =1{7,8,9,10};
)i

aaSeq[0] = Sequence< sal Int32 >(a , 3);
aaSeq[l] = Sequence< sal Int32 >(b , 3);
aaSeq[2] = Sequence< sal Int32 >(c , 4);

}

is a valid sequence of sequence< sal_Int32>.

The maximal length of a com: : sun: :star: :uno: : Sequence is limited; therefore, it is an error if a
UNO sequence that is too long is used in the context of the C++ language binding.

143

Mapping of Services

A new-style service is mapped to a C++ class with the same name. The class has one or more
public static member functions that correspond to the explicit or implicit constructors of the
service.

For a new-style service with a given interface type x1fc, an explicit constructor of the form

name ([in] Typel argl, [in] Type2 arg2) raises (Exceptionl, ..., ExceptionN);

is represented by the C++ member function

public:

static com::sun::star::uno::Reference< XIfc > name (
com: :sun::star::uno::Reference< com::sun::star::uno::XComponentContext > const & context,
Typel argl, Type2 arg2)
throw (Exceptionl, ..., ExceptionN, com::sun::star::uno::RuntimeException) { ... }

If a service constructor has a rest parameter (any. . .), it is mapped to a parameter of type

com::sun::star::uno::Sequence< com::sun::star::uno::Any > const &in C++.

If a new-style service has an implicit constructor, the corresponding C++ member function is of the
form

public:

static com::sun::star::uno::Reference< XIfc > create(
com: :sun::star::uno::Reference< com::sun::star::uno::XComponentContext > const & context)
throw (com::sun::star::uno::RuntimeException) { ... }

The semantics of both explicit and implicit service constructors in C++ are as follows. They are the
same as for Java:

- The first argument to a service constructor is always a com. sun.star.uno.XComponentCon-
text, which must be a non-null reference. Any further arguments are used to initialize the
created service (see below).

. The service constructor first uses
com.sun.star.uno.XComponentContext:qetServiceManaqertO(ﬂﬁahlaserVKEInanager(a
com.sun.star.lanq.XMultiComponentFactorv)fronﬁthegﬁvencxnnponentcorﬁext

. The service constructor then uses
com.sun.star.lang.XMultiComponentFactory:createInstanceWithArgumentsAndContext

to create a service instance, passing it the list of arguments without the initial XComponentCon-
text. If the service constructor has a single rest parameter, its sequence of any values is used
directly, otherwise the given arguments are made into a sequence of any values. In the case of
an implicit service constructor, no arguments are passed, and
com.sun.star.lang.XMultiComponentFactory:createlInstancelithContext is used
instead.

- If any of the above steps fails with an exception that the service constructor may throw
(according to its exception specification), the service constructor also fails by throwing that
exception. Otherwise, if any of the above steps fails with an exception that the service
constructor may not throw, the service constructor instead fails by throwing a
com.sun.star.uno.DeploymentException. Finally, if no service instance could be created
(because either the given component context has no service manager, or the service manager
does not support the requested service), the service constructor fails by throwing a
com.sun.star.uno.DeploymentException. The net effect is that a service constructor either
returns a non-null instance of the requested service, or throws an exception; a service
constructor will never return a null instance.

Old-style services are not mapped into the C++ language binding.

144 OpenOffice.org 2.3 Developer's Guide ¢ June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getServiceManager
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

Mapping of Singletons
A new-style singleton of the form
singleton Name: XIfc;

is mapped to a C++ class with the same name. The class has a single member function

public:
static com::sun::star::uno::Reference< XIfc > get(
com: :sun::star::uno: :Reference< com::sun::star::uno::XComponentContext > const & context)
throw (com::sun::star::uno::RuntimeException) { ... }
The semantics of such a singleton getter function in C++ are as follows (they are the same as for

Java):

- The com.sun.star.uno.XComponentContext argument must be non-null.

- The singleton getter uses com.sun.star.uno.XComponentContext:getValueByName to obtain
the singleton instance (within the /singletons/ name space).

- If no singleton instance could be obtained, the singleton getter fails by throwing a
com.sun.star.uno.DeploymentException. The net effect is that a singleton getter either
returns the requested non-null singleton instance, or throws an exception; a singleton getter will
never return a null instance.

Old-style services are not mapped into the C++ language binding.

Using Weak References

The C++ binding offers a method to hold UNO objects weakly, that is, not holding a hard reference
to it. A hard reference prevents an object from being destroyed, whereas an object that is held
weakly can be deleted anytime. The advantage of weak references is used to avoid cyclic refer-
ences between objects.

An object must actively support weak references by supporting the com.sun.star.uno. Xileak
interface. The concept is explained in detail in chapter 3.3.8 Professional UNO - UNO Concepts - Life-
time of UNO Objects.

Weak references are often used for caching. For instance, if you want to reuse an existing object,
but do not want to hold it forever to avoid cyclic references.

Weak references are implemented as a template class:

template< class t >
class com::sun::star::uno: :WeakReference<t>

You can simply assign weak references to hard references and conversely. The following examples
stress this:

// forward declaration of a function that
Reference< XFoo > getFoo();

int main ()
{
// default construct a weak reference.
// this reference is empty
WeakReference < XFoo > weakFoo;
{
// obtain a hard reference to an XFoo object
Reference< XFoo > hardFoo = getFoo();
assert (hardFoo.is());

// assign the hard reference to weak referencecount
weakFoo = hardFoo;

// the hardFoo reference goes out of scope. The object itself

// 1s now destroyed, if no one else keeps a reference to it.
// Nothing happens, if someone else still keeps a reference to it

145

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/DeploymentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getValueByName
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getValueByName
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html#getValueByName
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

146

// now make the reference hard again
Reference< XFoo > hardFoo2 = weakFoo;

// check, if this was successful

1f(hardFoo2.is ())

{
// the object is still alive, you can invoke calls on it again
hardFoo2->foo () ;

}

else

{ // the objects has died, you can't do anything with it anymore.
-
A call on a weak reference can not be invoked directly. Make the weak reference hard and check
whether it succeeded or not. You never know if you will get the reference, therefore always handle

both cases properly.

It is more expensive to use weak references instead of hard references. When assigning a weak
reference to a hard reference, a mutex gets locked and some heap allocation may occur. When the
object is located in a different process, at least one remote call takes place, meaning an overhead of
approximately a millisecond.

The XWeak mechanism does not support notification at object destruction. For this purpose,
objects must export XComponent and add com.sun.star.lang.XEventListener.

Exception Handling in C++

For throwing and catching of UNO exceptions, use the normal C++ exception handling mecha-
nisms. Calls to UNO interfaces may only throw the com: : sun: :star: :uno: :Exception or
derived exceptions. The following example catches every possible exception:

try
{
Reference< XInterface > rInitialObject =
xUnoUrlResolver->resolve (OUString: :createFromAsci (
“uno:socket,host=localhost, port=2002;urp; StarOffice.ServiceManager”));
}
catch(com::sun::star::uno::Exception &e
{
O0String o = 0OUStringToOString(e.Message, RTL TEXTENCODING ASCII US);
printf("An error occurred: $s\n", o.pData->buffer);
}

If you want to react differently for each possible exception type, look up the exceptions that may be
thrown by a certain method. For instance the resolve () method in

com.sun.star.bridge.XUnoUrlResolver is allowed to throw three kinds of exceptions. Catch
each exception type separately:

try
{
Reference< XInterface > rInitialObject =
xUnoUrlResolver->resolve (OUString::createFromAsci (
“uno:socket,host=localhost, port=2002;urp; StarOffice.ServiceManager”));
}
catch(ConnectionSetupException &e
{
0String o = 0OUStringToOString(e.Message, RTL_TEXTENCODING ASCII_US);
printf("%s\n", o.pData->buffer);
printf("couldn't access local resource (possible security resons)\n");
}
catch(NoConnectException &e)
{
OString o = OUStringToOString(e.Message, RTL TEXTENCODING ASCII US);
printf("%s\n", o.pData->buffer);
printf("no server listening on the resource\n");
}
catch(IllegalArgumentException &e)
{
O0String o = 0OUStringToOString(e.Message, RTL TEXTENCODING ASCII US);
printf("%s\n", o.pData->buffer);
printf("uno URL invalid\n");

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html

}

catch(RuntimeException & e)

{
0String o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII US);

printf("%s\n", o.pData->buffer);

printf ("an unknown error has occurred\n");
)
When implementing your own UNO objects (see 4.6 Writing UNO Components - C++ Component),
throw exceptions using the normal C++ throw statement:

void MyUnoObject::initialize(const Sequence< Any > & args.getLength()) throw(Exception
{
// we expect 2 elements in this sequence
if(2 '= args.getLength())
{
// create an error message
OUStringBuffer buf;
buf.appendAscii (“MyUnoObject::initialize, expected 2 args, got ”);
buf.append(args.getLength());
buf.append(“.”);

// throw the exception
throw Exception(buf.makeStringAndClear() , *this);

}

Note that only exceptions derived from com: :sun::star: :uno: :Exception may be thrown at
UNO interface methods. Other exceptions (for instance the C++ std::exception) cannot be bridged
by the UNO runtime if the caller and called object are not within the same UNO Runtime Environ-
ment. Moreover, most current Unix C++ compilers, for instance gcc 3.0.x, do not compile code.
During compilation, exception specifications are loosen in derived classes by throwing exceptions
other than the exceptions specified in the interface that it is derived. Throwing unspecified excep-
tions leads to a std::unexpected exception and causes the program to abort on Unix systems.

3.4.3 OpenOftfice.org Basic

OpenOffice.org Basic provides access to the OpenOffice.org API from within the office application.
It hides the complexity of interfaces and simplifies the use of properties by making UNO objects
look like Basic objects. It offers convenient Runtime Library (RTL) functions and special Basic
properties for UNO. Furthermore, Basic procedures can be easily hooked up to GUI elements, such
as menus, toolbar icons and GUI event handlers.

This chapter describes how to access UNO using the OpenOffice.org Basic scripting language. In
the following sections, OpenOffice.org Basic is referred to as Basic.

Handling UNO Objects

Accessing UNO Services

UNO objects are used through their interface methods and properties. Basic simplifies this by
mapping UNO interfaces and properties to Basic object methods and properties.

First, in Basic it is not necessary to distinguish between the different interfaces an object supports
when calling a method. The following illustration shows an example of an UNO service that
supports three interfaces:

147

O XFoo1

double getMore (void)
double getLess (void)
void doNothing (void)

Example XFoo2
<<service>>

void doSomething (void)
void doSomethingElse (int nElse)

XFoo3

int getlt ()
void setlt (int nlt)

[llustration 3.17: Basic Hides Interfaces

In Java and C++, it is necessary to obtain a reference to each interface before calling one of its
methods. In Basic, every method of every supported interface can be called directly at the object
without querying for the appropriate interface in advance. The ’.” operator is used:

' Basic

oExample = getExampleObjectFromSomewhere ()

oExample.doNothing () ' Calls method doNothing of XFool
oExample.doSomething () ' Calls method doSomething of XFoo2
oExample.doSomethingElse (42) ' Calls method doSomethingElse of XFoo2

Additionally, OpenOffice.org Basic interprets pairs of get and set methods at UNO objects as Basic
object properties if they follow this pattern:

SomeType getSomeProperty ()

void setSomeProperty (SomeType aValue)
In this pattern, OpenOffice.org Basic offers a property of type SomeType named SomeProperty.
This functionality is based on the com.sun.star.beans.Introspection service. For additional
details, see 6.2.3 Advanced UNO - Language Bindings - UNO Reflection API.

The get and set methods can always be used directly. In our example service above, the methods
getIt() and setIt (), or read and write a Basic property It are used:

Dim x as Integer
x = oExample.getIt () ' Calls getIt method of XFoo3

' is the same as

x = oExample.It ' Read property It represented by XFoo3
oExample.setIt(x) ' Calls setIt method of XFoo3

' is the same as

oExample.It = x ' Modify property It represented by XFoo3

If there is only a get method, but no associated set method, the property is considered to be read
only.
Dim x as Integer, y as Integer

x oExample.getMore () ' Calls getMore method of XFool
y oExample.getLess () ' Calls getLess method of XFool

' is the same as

x = oExample.More ' Read property More represented by XFool
y = oExample.Less ' Read property Less represented by XFool
' but

oExample.More
oExample.Less

' Runtime error “Property is read only”
y ' Runtime error “Property is read only”

I
x

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Introspection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Introspection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Introspection.html

Properties an object provides through com.sun.star.beans.XPropertySet are available through
the . operator. The methods of com.sun.star.beans.XPropertySet can be used also. The object
oExample? in the following example has three integer properties Valuel, Value2 and Value3:

Dim x as Integer, y as Integer, z as Integer
x = oExample2.Valuel
y oExample2.Value2
z oExample?2.Value3

' is the same as

x = oExample2.getPropertyValue(“Valuel”)

y = oExample2.getPropertyValue(“Value2”)
z = oExample2.getPropertyValue(“Value3”)
' and

oExample2.Valuel
oExample2.Value2
oExample2.Value3

o
N

' is the same as

oExample?2.setPropertyValue (“Valuel”, x)
oExample?2.setPropertyValue (“Value2”, y)
oExample?2.setPropertyValue (“Value3”, z)

Basic uses com.sun.star.container.XNameAccess to provide named elements in a collection
through the . operator. However, XxNameAccess only provides read access. If a collection offers

write access through com.sun.star.container.XNameReplace Or
com.sun.star.container.XNameContainer, use the appropriate methods explicitly:

' oNameAccessible is an object that supports XNameAccess
' including the names “Valuel”, “Value2”

x = oNameAccessible.Valuel

y = oNameAccessible.Value2

' is the same as

x = oNameAccessible.getByName (“Valuel”)

vy oNameAccessible.getByName (“Value2”)

' but

oNameAccessible.Valuel = x ' Runtime Error, Valuel cannot be changed
oNameAccessible.Value2 =y ' Runtime Error, Value2 cannot be changed

' oNameReplace is an object that supports XNameReplace
' replaceByName () sets the element Valuel to 42
oNameReplace.replaceByName ("Valuel", 42)

Instantiating UNO Services

In Basic, instantiate services using the Basic Runtime Library (RTL) function createUnoService ().
This function expects a fully qualified service name and returns an object supporting this service, if
it is available:

oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

This call instantiates the com.sun.star.ucb.SimpleFileAccess service. To ensure that the func-
tion was successful, the returned object can be checked with the IsNull function:

oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

bError = IsNull(oSimpleFileAccess) ' bError is set to False
oNoService = CreateUnoService("com.sun.star.nowhere.ThisServiceDoesNotExist")
bError = IsNull(oNoService) ' bError is set to True

Instead of using CreateUnoService () to instantiate a service, it is also possible to get the global
UNO com.sun.star.lang.ServiceManager of the OpenOffice.org process by calling GetPro-
cessServiceManager (). Once obtained, use createlInstance () directly:

oServiceMgr = GetProcessServiceManager ()
oSimpleFileAccess = oServiceMgr.createInstance("com.sun.star.ucb.SimpleFileAccess")

149

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/SimpleFileAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/SimpleFileAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ucb/SimpleFileAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameReplace.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

150

' is the same as

oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

The advantage of GetProcessServiceManager () is that additional information and pass in argu-
ments is received when services are instantiated using the service manager. For instance, to
initialize a service with arguments, the createInstancewWithArguments () method of
com.sun.star.lang.XMultiServiceFactory has to be used at the service manager, because there
is no appropriate Basic RTL function to do that. Example:

Dim args (1)
args (0) = "Important information"
args (1) = "Even more important information"
oService = oServiceMgr.createInstanceWithArguments
("com.sun.star.nowhere.ServiceThatNeedsInitialization", args())

The object returned by GetProcessserviceManager () is a normal Basic UNO object supporting

com.sun.star.lang.ServiceManager. Its properties and methods are accessed as described
above.

In addition, the Basic RTL provides special properties as API entry points. They are described in
more detail in 12.3 OpenOffice.org Basic and Dialogs - Features of OpenOffice.org Basic:

OpenOffice.org Basic RTL Property Description

ThisComponent Only exists in Basic code which is embedded in a Writer,
Calc, Draw or Impress document. It contains the document
model the Basic code is embedded in.

StarDesktop The com.sun.star. frame.Desktop singleton of the
office application. It loads document components and
handles the document windows. For instance, the document

in the top window can be retrieved using
oDoc = StarDesktop.CurrentComponent

Getting Information about UNO Objects

The Basic RTL retrieves information about UNO objects. There are functions to evaluate objects
during runtime and object properties used to inspect objects during debugging.

Checking for interfaces during runtime

Although Basic does not support the queryInterface concept like C++ and Java, it can be useful
to know if a certain interface is supported by a UNO Basic object or not. The function HasUnoInt-
erfaces () detects this.

The first parameter HasUnoInterfaces () expects the object that should be tested. Parameter(s) of
one or more fully qualified interface names can be passed to the function next. The function returns
True if all these interfaces are supported by the object, otherwise False.

Sub Main
Dim oSimpleFileAccess
oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

Dim bSuccess

Dim IfaceNamel$, IfaceName2$, IfaceName3$
IfaceNamel$ = "com.sun.star.uno.XInterface"
IfaceName2$ "com.sun.star.ucb.XSimpleFileAccess2"
IfaceName3$ "com.sun.star.container.XPropertySet"

bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceNamel$
MsgBox bSuccess ' Displays True because XInterface is supported

bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceNamel$, IfaceName2$
MsgBox bSuccess ' Displays True because XInterface
' and XSimpleFileAccess2 are supported

bSuccess = HasUnolInterfaces(oSimpleFileAccess, IfaceName3$)
MsgBox bSuccess ' Displays False because XPropertySet is NOT supported

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/ServiceManager.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html

bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceNamel$, IfaceName2$, IfaceName3$
MsgBox bSuccess ' Displays False because XPropertySet is NOT supported
End Sub

Testing if an object is a struct during runtime

As described in the section 3.4.3 Professional UNO - UNO Language Bindings - OpenOffice.org Basic -
Type Mappings - Structs above, structs are handled differently from objects, because they are treated
as values. Use the IsUnostruct () function to check it the UNO Basic object represents an object
or a struct. This function expects one parameter and returns True if this parameter is a UNO struct,
otherwise False. Example:

Sub Main
Dim bIsStruct
' Instantiate a service
Dim oSimpleFileAccess

oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
bIsStruct = IsUnoStruct(oSimpleFileAccess)
MsgBox bIsStruct ' Displays False because oSimpleFileAccess is NO struct

' Instantiate a Property struct
Dim aProperty As New com.sun.star.beans.Property
bIsStruct = IsUnoStruct(aProperty)

MsgBox bIsStruct ' Displays True because aProperty is a struct
bIsStruct = IsUnoStruct(42)
MsgBox bIsStruct ' Displays False because 42 is NO struct

End Sub

Testing objects for identity during runtime

To find out if two UNO OpenOffice.org Basic objects refer to the same UNO object instance, use
the function EqualUnoObjects (). Basic is not able to apply the comparison operator = to argu-
ments of type object, for example, If Objl = Obj2 Then which leads to a runtime error.

Sub Main

Dim bIdentical
Dim oSimpleFileAccess, oSimpleFileAccess2, oSimpleFileAccess3
' Instantiate a service

oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
oSimpleFileAccess2 = oSimpleFileAccess ' Copy the object reference
bIdentical = EqualUnoObjects(oSimpleFileAccess, oSimpleFileAccess2)
MsgBox bIdentical ' Displays True because the objects are identical

' Instantiate the service a second time
oSimpleFileAccess3 = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
bIdentical = EqualUnoObjects(oSimpleFileAccess, oSimpleFileAccess3)
MsgBox bIdentical ' Displays False, oSimpleFileAccess3 is another instance

bIdentical = EqualUnoObjects(oSimpleFileAccess, 42)

MsgBox bIdentical ' Displays False, 42 is not even an object
' Instantiate a Property struct

Dim aProperty As New com.sun.star.beans.Property

Dim aProperty2

aProperty2 = aProperty ' Copy the struct
bIdentical = EqualUnoObjects(aProperty, aProperty2
MsgBox bIdentical ' Displays False because structs are values

' and so aProperty2 is a copy of aProperty
End Sub
Basic hides interfaces behind OpenOffice.org Basic objects that could lead to problems when devel-
opers are using API structures. It can be difficult to understand the API reference and find the
correct method of accessing an object to reach a certain goal.

To assist during development and debugging, every UNO object in OpenOffice.org Basic has
special properties that provide information about the object structure. These properties are all
prefixed with Dbg to emphasize their use for development and debugging purposes. The type of
these properties is String. To display the properties use the MsgBox function.

Inspecting interfaces during debugging

The Dbg SupportedInterfaces lists all interfaces supported by the object. In the following
example, the object returned by the function GetProcessServiceManager () described in the
previous section is taken as an example object.

oServiceManager = GetProcessServiceManager ()
MsgBox oServiceManager.Dbg_SupportedInterfaces

151

152

This call displays a message box:

soffice

%]

Supported interfaces by object

"Process Service Manager":
corn.sun star lang ¥Multi Service Factaory
com.sun.star lang Xkulti Component Factary
com.zun.star lang X5ervicelnfo
com.zun.star lang Xlnitialization
com.zun.starlang xUnoTunnel
com.sun.star.container X5et

cam.zun.star.container XEnumerationAcceszs
comsun star.container XElement dccess

cam.zun.star.container XContent EnumetationAccess
com.zun.star.beans XProperty Set
com.zun.star lang XTypeProvider
com.zun.star.unoXieak
corm.sun star lang ¥Component

Hllustration 3.18: Dbg Supportedinterfaces
Property

The list contains all interfaces supported by the object. For interfaces that are derived from other
interfaces, the super interfaces are indented as shown above for com.sun.star.container.Xset,
which is derived from com.sun.star.container.XEnumerationAccess based upon
com.sun.star.container.XElementAccess.

If the text (ERROR: Not really supported!) is printed behind an interface name, the implementation of the
object usually has a bug, because the object pretends to support this interface (per
com.sun.star.lang.XTypeProvider, but a query for it fails. For details, see 6.2.3 Advanced UNO -
Language Bindings - UNO Reflection API).

Inspecting properties during debugging

The Dbg Properties lists all properties supported by the object through
com.sun.star.beans.XPropertySet and through get and set methods that could be mapped to
Basic object properties:

oServiceManager = GetProcessServiceManager ()
MsgBox oServiceManager.Dbg Properties

This code produces a message box like the following example:

soffice §|

Properties of object

"Process Serviceanager '
SbxOBJECT Default Context:
SbxOBJECT Registry:

SbxARRAY AvailableService Mames;
SbxSTRIMG ImplementationiMame;
SbxARRAY SupportedService Mames;
SbxOEJECT ElermentType:;
SbxOBJECT Property Setinfo;
SbxARRAY Types:;

SbexcARRAY Implermentation]d;
SbxSTRIMG Dbg_Supportedinterfaces;
SbxSTRIMG Dbg_Properties;
SbxSTRIMG Dbg_Methods

[llustration 3.19: Dbg Properties

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XElementAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html

Inspecting Methods During Debugging

The Dbg Methods lists all methods supported by an object. Example:

oServiceManager = GetProcessServiceManager ()
MsgBox oServiceManager.Dbg Methods

This code displays:

soffice E]

Methods of ohbject

"ProcessServiceManager "

SExEMPTY quety interface (SbexOBJECT) ; SbxOBJECT createlnstance (ShSTRIMNG) ;
SbxOBJECT createlnstancewithArguments [SbxSTRIMG, SbxARRAY Y ShxARRAY
getlvailable Service Marmes (void) ;

SbxOBJELCT createlnstanceWith Cantext { SbxSTRIMG, SbxOBJECT) ; SbxOBJECT
createlnstanceWith ArgumentsAndContext Sbx STRING, SbxARRAY, SbxOBJECT 3 ;
SbxARRAY getAvailable ServiceMames (woid) ;. Sbx5TRIMG getimplementationiame void J ;
SbxBOOL supportsService { SbxSTRIMG 1 ; SbxARRAY getSuppartedService Mames (void J ;
SbxWOID initialize (SbxARRAY) . Unknown Sbx-Type! getSomething { ShxARRAY)
SbxOBJECT getElementType woid) ; SbxBOOL hasElements (woid J ;

SbxOBJELCT create Enumeration {woid J ; SbxBO0OL has (SbeARIANT 3 ;

SbeWOI0 insert { SbocWARIANT 3 3bxW 010 remowve { SEocARIANT 3

3bxOBJECT create CantentEnumeration (Sbe3TRIMG 1 ; SbxARRAY getAvailable Service Mames
Cwoid 7 ;

SbxOBJECT getProperty Setinfo (waid 2 SbeOI0 setPropertyvalue ¢ SbxSTRIMNG,
SEAARLANT 3 ;

SBxEMPTY getPropertyalue ¢ SBxSTRIMG O ; Sbe0I0 addProperty Change Listener

{ SbxSTRIMG, SbxOBJECT) ;

SbxNOI0 removeProperty Changelistener © Sk STRING, SbeOBJECT) ; SbxM0I0
addetoable Changelistensr ¢ SbxSTRIMG, SbecOBJECT 1 :

Sbx%010 remaoveyietoable Changelistenetr (SbxSTRIMG, SbxOBJECT 1 ; SbxARRAY getTyvpes
Cwaid)

SbxARRAY getlmplementationld { woid) ; SbxOBJECT queryAdapter (void J ;

Sbx%0I0 dispose (void) ; Sbx%0I0 addEventlistener SbxOBJECT) ;

5bx0I0 removeEventlistener { SbxOBJECT 3

Hllustration 3.20: Dbg Methods

The notations used in Dbg_Properties and Dbg_Methods refer to internal implementation type
names in Basic. The Sbx prefix can be ignored. The remaining names correspond with the normal
Basic type notation. The SbxEMPTY is the same type as Variant. Additional information about
Basic types is available in the next chapter.

Basic uses the com.sun.star.lang.XTypeProvider interface to detect which interfaces an object
supports. Therefore, it is important to support this interface when implementing a component that should be
accessible from Basic. For details, see 4 Writing UNO Components.

Mapping of UNO and Basic Types

Basic and UNO use different type systems. While OpenOffice.orgBasic is compatible to Visual
Basic and its type system, UNO types correspond to the IDL specification (see 3.2.1 Professional
UNO - API Concepts - Data Types), therefore it is necessary to map these two type systems. This
chapter describes which Basic types have to be used for the different UNO types.

Mapping of Simple Types

In general, the OpenOffice.orgBasic type system is not rigid. Unlike C++ and Java,
OpenOffice.orgBasic does not require the declaration of variables, unless the 0ption Explicit
command is used that forces the declaration. To declare variables, the bim command is used. Also,
a OpenOffice.orgBasic type can be optionally specified through the Dim command. The general
syntax is:

153

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

Dim VarName [As Typel] [, VarName [As Typel]...

All variables declared without a specific type have the type variant. Variables of type variant
can be assigned values of arbitrary Basic types. Undeclared variables are variant unless type
postfixes are used with their names. Postfixes can be used in bim commands as well. The following
table contains a complete list of types supported by Basic and their corresponding postfixes:

Type Postfix Range

Boolean True or False

Integer % -32768to 32767

Long & -2147483648t02147483647
Single ! Floating point number

negative: -3.402823E38 to -1.401298E-45
positive: 1.401298E-45to 3.402823E38

Double # Double precision floating point number
negative: -1.79769313486232E308 to -4.94065645841247E~-324
positive: 4.94065645841247E-324t01.79769313486232E308

Currency @ Fixed point number with four decimal places
-922,337,203,685,477.5808to 922,337,203,685,477.5807

Date | 01/01/100 to 12/31/9999
Object ‘ Basic Object

String $ Character string

Variant ‘ arbitrary Basic type

Consider the following Dim examples.

Dim a, b ' Type of a and b is Variant
Dim c as Variant ' Type of ¢ is Variant
Dim d as Integer ' Type of d is Integer (16 bit!)

' The type only refers to the preceding variable

Dim e, f as Double ' ATTENTION! Type of e is Variant!
' Only the type of f is Double

Dim g as String ' Type of g is String

Dim i as Date ' Type of g is Date

' Usage of Postfixes

Dim i% ' is the same as

Dim i as Integer

Dim d# ' is the same as
Dim d as Double

Dim s$ ' is the same as
Dim s as String

The correlation below is used to map types from UNO to Basic and vice versa.

UNO Basic

void internal type
boolean Boolean
byte Integer
short Integer
unsigned short internal type
long Long
unsigned long internal type

154 OpenOffice.org 2.3 Developer's Guide ¢ June 2007

UNO Basic

hyper internal type

unsigned hyper internal type

float Single

double Double

char internal type

string String

type com.sun.star.reflection.XIdlClass
any Variant

The simple UNO type type is mapped to the com.sun.star.reflection.XId1Class interface to
retrieve type specific information. For further details, refer to 6.2.3 Advanced UNO - Language Bind-
ings - UNO Reflection API.

When UNO methods or properties are accessed, and the target UNO type is known, Basic auto-
matically chooses the appropriate types:

' The UNO object oExamplel has a property “Count” of type short
a% = 42

oExamplel.Count = a% ' a% has the right type (Integer)

pi = 3,141593

oExamplel.Count = pi ' pi will be converted to short, so Count will become 3
s$ = “111”
oExamplel.Count = s$ ' s$ will be converted to short, so Count will become 111

Occasionally, OpenOffice.orgBasic does not know the required target type, especially if a param-
eter of an interface method or a property has the type any. In this situation, OpenOffice.orgBasic
mechanically converts the OpenOffice.orgBasic type into the UNO type shown in the table above,
although a different type may be expected. The only mechanism provided by OpenOffice.orgBasic
is an automatic downcast of numeric values:

Long and Integer values are always converted to the shortest possible integer type:
tobyte if -128 <= Vvalue <= 127
to short if -32768 <= value <= 32767

The single/Double values are converted to integers in the same manner if they have no decimal
places.

This mechanism is used, because some internal C++ tools used to implement UNO functionality in
OpenOffice.org provide an automatic upcast but no downcast. Therefore, it can be successful to
pass a byte value to an interface expecting a 1ong value, but not vice versa.

In the following example, oNameCont is an object that supports com.sun.star.container.xName-
Container and contains elements of type short. Assume FirstValue is a valid entry.

a% = 42

oNameCount .replaceByName (“FirstvValue”, a%) ' Ok, a% is downcasted to type byte

b% = 123456

oNameCount .replaceByName (“FirstValue”, b%) ' Fails, b% is outside the short range

The method call fails, therefore the implementation should throw the appropriate exception that is
converted to a OpenOffice.orgBasic error by the OpenOffice.orgBasic RTL. It may happen that an
implementation also accepts unsuitable types and does not throw an exception. Ensure that the
values used are suitable for their UNO target by using numeric values that do not exceed the target
range or converting them to the correct Basic type before applying them to UNO.

155

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html

156

Always use the type variant to declare variables for UNO Basic objects, not the type object. The
OpenOffice.orgBasic type Object is tailored for pure OpenOffice.orgBasic objects and not for UNO
OpenOffice.orgBasic objects. The variant variables are best for UNO Basic objects to avoid prob-
lems that can result from the OpenOffice.orgBasic specific behavior of the type object:

Dim oServicel ' Ok
oServicel = CreateUnoService("com.sun.star.anywhere.Something")

Dim oService2 as Object ' NOT recommended
oService2 = CreateUnoService("com.sun.star.anywhere.SomethingElse")

Mapping of Sequences and Arrays

Many UNO interfaces use sequences, as well as simple types. The OpenOffice.orgBasic counterpart
for sequences are arrays. Arrays are standard elements of the Basic language. The example below
shows how they are declared:

Dim al(100) ' Variant array, index range: 0-100 -> 101 elements

Dim a2%(5) Integer array, index range: 0-5 -> 6 elements

Dim a3$(0) String array, index range: 0-0 -> 1 element

Dim a4&(9, 19) ' Long array, index range: (0-9) x (0-19) -> 200 elements
Basic does not have a special index operator like [] in C++ and Java. Array elements are accessed
using normal parentheses ():

Dim i%, a%(10)

for i% = 0 to 10 ' this loop initializes the array
as%(i%) = i%

next 1%

dim s$

for i% = 0 to 10 ' this loop adds all array elements to a string
s$ =s8$ + " " + a%(i%)

next 1%

msgbox s$ ' Displays the string containing all array elements

Dim b(2, 3)

b(2, 3) =23

b(0, 0) =0

b(2, 4) =24 ' Error ”“Subscript out of range”

As the examples show, the indices in Dim commands differ from C++ and Java array declarations.
They do not describe the number of elements, but the largest allowed index. There is one more
array element than the given index. This is important for the mapping of OpenOffice.orgBasic
arrays to UNO sequences, because UNO sequences follow the C++/Java array semantic.

When the UNO API requires a sequence, the Basic programmer uses an appropriate array. In the
following example, oSequenceContainer is an object that has a property TheSequence of type
sequence<short>. To assign a sequence of length 10 with the values 0, 1, 2, ... 9 to this property,
the following code can be used:

Dim i%, a%(9) ' Maximum index 9 -> 10 elements

for 1% = 0 to 9 ' this loop initializes the array
as%(i%) = i%

next i%

oSequenceContainer.TheSequence = a% ()

' If “TheSequence” is based on XPropertySet alternatively

oSequenceContainer.setPropertyValue (“TheSequence”, a%())
The Basic programmer must be aware of the different index semantics during programming. In the
following example, the programmer passed a sequence with one element, but actually passed two
elements:

' Pass a sequence of length 1 to the TheSequence property:
Dim a%(1) ' WRONG: The array has 2 elements, not only 1!
as(0) =3 ' Only Element O is initialized,

' Element 1 remains 0 as initialized by Dim

' Now a sequence with two values (3,0) is passed what

OpenOffice.org 2.3 Developer's Guide « June 2007

' may result in an error or an unexpected behavior!
oSequenceContainer.setPropertyValue (“TheSequence”, a%$())

When using Basic arrays as a whole for parameters or for property access, they should always be followed
by " () " in the Basic code, otherwise errors may occur in some situations.

It can be useful to use a OpenOffice.orgBasic RTL function called Array () to create, initialize and
assign it to a variant variable in a single step, especially for small sequences:

Dim a ' should be declared as Variant
a = Array(1, 2, 3)

' is the same as

@]

m a(2
1
2

3

im a(
(0)
(1)
(2)
Sometimes it is necessary to pass an empty sequence to a UNO interface. In Basic, empty sequences
can be declared by omitting the index from the Dim command:

Dim a% () ' empty array/sequence of type Integer

Dim b$ () ' empty array/sequence of String

Sequences returned by UNO are also represented in Basic as arrays, but these arrays do not have to
be declared as arrays beforehand. Variables used to accept a sequence should be declared as
variant. To access an array returned by UNO, it is necessary to get information about the number
of elements it contains with the Basic RTL functions LBound () and UBound ().

The function LBound () returns the lower index and UBound () returns the upper index. The
following code shows a loop going through all elements of a returned sequence:

Dim aResultArray ' should be declared as Variant
aResultArray = oSequenceContainer.TheSequence

dim i%, iFrom%, iTo%

iFrom% = LBound(aResultArray())

iTo% = UBound(aResultArray())

for i% = iFrom% to iTo% ' this loop displays all array elements
msgbox aResultArray (i%)

next 1%

The function LBound () is a standard Basic function and is not specific in a UNO context. Basic
arrays do not necessarily start with index 0, because it is possible to write something similar to:

Dim a (3 to 5)

This causes the array to have a lower index of 3. However, sequences returned by UNO always
have the start index 0. Usually only UBound () is used and the example above can be simplified to:

Dim aResultArray ' should be declared as Variant

aResultArray = oSequenceContainer.TheSequence

Dim i%, iTo%

iTo% = UBound(aResultArray())

For i% = 0 To iTo% ' this loop displays all array elements
MsgBox aResultArray (i%)

Next i%

The element count of a sequence/array can be calculated easily:

u% = UBound(aResultArray())
ElementCount% = u% + 1

For empty arrays/sequences UBound returns -1. This way the semantic of UBound stays consistent
as the element count is then calculated correctly as:

ElementCount$% = u% + 1 '=-1+1=0

157

The mapping between UNO sequences and Basic arrays depends on the fact that both use a zero-based
‘? index system. To avoid problems, the syntax
Dim a (IndexMin to IndexMin)
or the Basic command Option Base 1 should not be used. Both cause all Basic arrays to start with an
index other than 0.

UNO also supports sequences of sequences. In Basic, this corresponds with arrays of arrays. Do not
mix up sequences of sequences with multidimensional arrays. In multidimensional arrays, all sub
arrays always have the same number of elements, whereas in sequences of sequences every
element sequence can have a different size. Example:

Dim aArrayOfArrays ' should be declared as Variant
aArrayOfArrays = oExample.ShortSequences ' returns a sequence of sequences of short

Dim i%, NumberOfSequences$%
Dim j%, NumberOfElements$
Dim aElementArray

NumberOfSequences% = UBound(aArrayOfArrays()) + 1
For i% = 0 to NumberOfSequences$ - 1 ' loop over all sequences
aElementArray = aArrayOfArrays(i%
NumberOfElements% = UBound(aElementArray()) + 1
For j% = 0 to NumberOfElements% - 1 ' loop over all elements
MsgBox aElementArray(j%)
Next j%
Next 1%

To create an array of arrays in Basic, sub arrays are used as elements of a master array:

' Declare master array
Dim aArrayOfArrays(2)

' Declare sub arrays
Dim aArray0(3)
Dim aArrayl(2)
Dim aArray2(0)

' Initialise sub arrays

aArray0(0) = 0
aArrayO(1) 1
aArray0(2) 2
aArray0(3) = 3
aArrayl(0) = 42
aArrayl(1) =0
aArrayl(2) = -42
aArray2(0) =1

' Assign sub arrays to the master array

aArrayOfArrays(0) = aArrayO ()
aArrayOfArrays(1) = aArrayl()
aArrayOfArrays(2) = aArray2()

' Assign the master array to the array property
oExample.ShortSequences = aArrayOfArrays ()

In this situation, the runtime function Array () is useful. The example code can then be written
much shorter:

' Declare master array
Dim aArrayOfArrays(2)

' Create and assign sub arrays
aArrayOfArrays(0) = Array(0, 1, 2, 3)
aArrayOfArrays(1) = Array(42, 0, -42
aArrayOfArrays(2) = Array(1

' Assign the master array to the array property
oExample.ShortSequences = aArrayOfArrays (

If you nest Array (), more compact code can be written, but it becomes difficult to understand the
resulting arrays:

' Declare master array variable as variant
Dim aArrayOfArrays

' Create and assign master array and sub arrays
aArrayOfArrays = Array(Array(0, 1, 2, 3), Array(42, 0, -42), Array(1))

158 OpenOffice.org 2.3 Developer's Guide ¢ June 2007

' Assign the master array to the array property
oExample.ShortSequences = aArrayOfArrays ()

Sequences of higher order can be handled accordingly.

Mapping of Structs
UNO struct types can be instantiated with the Dim As New command as a single instance and
array.

' Instantiate a Property struct
Dim aProperty As New com.sun.star.beans.Property

' Instantiate an array of Locale structs
Dim Locales (10) As New com.sun.star.lang.Locale

For instantiated polymorphic struct types, there is a special syntax of the Dim As New command,
giving the type as a string literal instead of as a name:

Dim o As New "com.sun.star.beans.Optional<long>"
The string literal representing a UNO name is built according to the following rules:

The strings representing the relevant simple UNO types are "boolean", "byte", "short",
"long", "hyper", "float", "double", "char", "string", "type", and "any", respectively.

The string representing a UNO sequence type is " []" followed by the string representing the
component type.

The string representing a UNO enum, plain struct, or interface type is the name of that type.

The string representing an instantiated polymorphic struct type is the name of the polymorphic
struct type template, followed by "<, followed by the representations of the type arguments
(separated from one another by ", "), followed by ">".

No spurious spaces or other characters may be introduced into these string representations.

UNO struct instances are handled like UNO objects. Struct members are accessed using the . oper-
ator. The Dbg_Properties property is supported. The properties Dbg SupportedInterfaces and
Dbg_Methods are not supported because they do not apply to structs.:

' Instantiate a Locale struct
Dim aLocale As New com.sun.star.lang.Locale

' Display properties
MsgBox aLocale.Dbg_ Properties

' Access “Language” property
alocale.Language = "en"

Objects and structs are different. Objects are handled as references and structs as values. When
structs are assigned to variables, the structs are copied. This is important when modifying an object
property that is a struct, because a struct property has to be reassigned to the object after reading
and modifying it.

In the following example, oExample is an object that has the properties MyObject and MyStruct.
The object provided by MyObject supports a string property objectName.
The struct provided by MyStruct supports a string property StructName.

Both ocExample.MyObject.ObjectName and oExample .MyStruct.StructName should be modi-

fied. The following code shows how this is done for an object:
' Accessing the object
Dim oObject

oObject = oExample.MyObject
oObject.ObjectName = “Tim” ' Ok!

159

160

' or shorter

oExample.MyObject.ObjectName = “Tim” ' Ok!

The following code shows how it is done correctly for the struct (and possible mistakes):

' Accessing the struct

Dim aStruct

aStruct = oExample.MyStruct ' aStruct is a copy of oExample.MyStruct!
aStruct.StructName = “Tim” ' Affects only the property of the copy!

If the code ended here, oExample.MyStruct wouldn't be modified!

oExample.MyStruct = aStruct ' Copy back the complete struct! Now it's ok!

' Here the other variant does NOT work at all, because
' only a temporary copy of the struct is modified!
oExample.MyStruct.StructName = “Tim” ' WRONG! oExample.MyStruct is not modified!

Mapping of Enums and Constant Groups

Use the fully qualified names to address the values of an enum type by their names. The following
examples assume that oExample and oExample?2 support com.sun.star.beans.XPropertySet
with a property status of the enum type com.sun.star.beans.PropertyState:

Dim EnumValue
EnumValue = com.sun.star.beans.PropertyState.DEFAULT VALUE
MsgBox EnumValue ' displays 1

eExample.Status = com.sun.star.beans.PropertyState.DEFAULT VALUE

Basic does not support Enum types. In Basic, enum values coming from UNO are converted to
Long values. As long as Basic knows if a property or an interface method parameter expects an
enum type, then the Long value is internally converted to the right enum type. Problems appear
with Basic when interface access methods expect an Any:

Dim EnumValue
EnumValue = oExample.Status ' EnumValue is of type Long

' Accessing the property implicitly
oExample2.Status = EnumValue ' Ok! EnumValue is converted to the right enum type

' Accessing the property explicitly using XPropertySet methods

oExample?2.setPropertyValue (“Status”, EnumValue) ' WRONG! Will probably fail!
The explicit access could fail, because Enumvalue is passed as parameter of type Any to setProp-
ertyvalue (), therefore Basic does not know that a value of type PropertyState is expected. There
is still a problem, because the Basic type for com.sun.star.beans.PropertyState is Long. This
problem is solved in the implementation of the com.sun.star.beans.XPropertySet interface. For
enum types, the implicit property access using the Basic property syntax 0bject.Property is
preferred to calling generic methods using the type Any. In situations where only a generic inter-
face method that expects an enum for an Any, there is no solution for Basic.

Constant groups are used to specify a set of constant values in IDL. In Basic, these constants can be
accessed using their fully qualified names. The following code displays some constants from
com.sun.star.beans.PropertyConcept:

MsgBox com.sun.star.beans.PropertyConcept.DANGEROUS ' Displays 1
MsgBox com.sun.star.beans.PropertyConcept.PROPERTYSET ' Displays 2

A constant group or enum can be assigned to an object. This method is used to shorten code if
more than one enum or constant value has to be accessed:

Dim oPropConcept

oPropConcept = com.sun.star.beans.PropertyConcept
msgbox oPropConcept.DANGEROUS ' Displays 1
msgbox oPropConcept.PROPERTYSET ' Displays 2

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyConcept.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyConcept.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyConcept.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyState.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

Case Sensitivity

Generally Basic is case insensitive. However, this does not always apply to the communication
between UNO and Basic. To avoid problems with case sensitivity write the UNO related code as if
Basic was case sensitive. This facilitates the translation of a Basic program to another language, and
Basic code becomes easier to read and understand. The following discusses problems that might
occur.

Identifiers that differ in case are considered to be identical when they are used with UNO object
properties, methods and struct members.
Dim ALocale As New com.sun.star.lang.Locale

alocale.language = "en" ' Ok
MsgBox aLocale.Language ' Ok

The exceptions to this is if a Basic property is obtained through com.sun.star.container.xName-
Access as described above, its name has to be written exactly as it is in the API reference. Basic
uses the name as a string parameter that is not interpreted when accessing
com.sun.star.container.XNameAccess using its methods.

“oNameAccessible is an object that supports XNameAccess

' including the names “Valuel”, “Value2”
x = oNameAccessible.Valuel ' Ok
y = oNameAccessible.VaLUe2 ' Runtime Error, Value2 is not written correctly
' is the same as
x = oNameAccessible.getByName (“Valuel”) ' Ok
y = oNameAccessible.getByName (“VaLUe2”) ' Runtime Error, Value2 is not written correctly
Exception Handling

Unlike UNO, Basic does not support exceptions. All exceptions thrown by UNO are caught by the
Basic runtime system and transformed to a Basic error. Executing the following code results in a
Basic error that interrupts the code execution and displays an error message:

Sub Main

Dim oLib

oLib = BasicLibraries.getByName("InvalidLibraryName")
End Sub

The BasicLibraries object used in the example contains all the available Basic libraries in a
running office instance. The Basic libraries contained in BasicLibraries is accessed using
com.sun.star.container.XNameAccess. An exception was provoked by trying to obtain a non-
existing library. The BasicLibraries object is explained in more detail in 12.4 OpenOffice.org Basic
and Dialogs - Advanced Library Organization.

The call to getByName () results in this error box:

OpenOffice.org 1.1.0

BEASIC runtime errar.

An exception occurred

Type: com.sun.star.container. MoSuchElement Exception
Meszage: .

Hlustration 3.21: Unhandled UNO Exception

However, the Basic runtime system is not always able to recognize the Exception type. Sometimes
only the exception message can be displayed that has to be provided by the object implementation.

161

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameAccess.html

Exceptions transformed to Basic errors can be handled just like any Basic error using the on Error
GoTo command:
Sub Main
On Error Goto ErrorHandler ' Enables error handling
Dim oLib
oLib = BasicLibraries.getByName ("InvalidLibraryName")

MsgBox "After the Error"
Exit Sub

' Label
ErrorHandler:

MsgBox "Error code: " + Err + Chr$(13) + Error$

Resume Next ' Continues execution at the command following the error command
End Sub

When the exception occurs, the execution continues at the ErrorHandler label. In the error
handler, some properties are used to get information about the error. The Err is the error code that

is 1 for UNO exceptions. The Error$ contains the text of the error message. Executing the program
results in the following output:

soffice §|

Errar code: 1

An exception occurred

Type: com.zun.star.container. Mo SuchElement Exception
hMessage:

Hlustration 3.22: Handled UNO Exception

Another message box After the Error is displayed after the above dialog box, because Resume
Next goes to the code line below the line where the exception was thrown. The Exit Sub
command is required so that the error handler code would be executed again.

Listeners

Many interfaces in UNO are used to register listener objects implementing special listener inter-
faces, so that a listener gets feedback when its appropriate listener methods are called.
OpenOffice.org Basic does not support the concept of object implementation, therefore a special
RTL function named CreateUnoListener () has been introduced. It uses a prefix for method
names that can be called back from UNO. The CreateUnoListener () expects a method name
prefix and the type name of the desired listener interface. It returns an object that supports this
interface that can be used to register the listener.

The following example instantiates an com.sun.star.container.XContainerListener. Note the
prefix ContListener :

Dim oListener
oListener = CreateUnolListener("ContListener ", "com.sun.star.container.XContainerListener")

The next step is to implement the listener methods. In this example, the listener interface has the
following methods:

Methods of com. sun.star.container.XContainerListener

disposing() Method of the listener base interface com.sun.star.lang.XEventListener,
contained in every listener interface, because all listener interfaces must be
derived from this base interface. Takes a com.sun.star.lang.EventObject

elementInserted() Method of interface com.sun.star.container.XContainerListener.
Takes a com.sun.star.container.ContainerEvent.

162 OpenOffice.org 2.3 Developer's Guide ¢ June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html

Methods of com.sun.star.container.XContainerListener

elementRemoved () Method of interface com.sun.star.container.XContainerListener.
Takes a com.sun.star.container.ContainerEvent.

elementReplaced() Method of interface com.sun.star.container.XContainerListener.
Takes a com.sun.star.container.ContainerEvent.

In the example, ContListener is specified as a name prefix, therefore the following subs have to
be implemented in Basic.

- ContListener disposing
-+ ContListener elementInserted
- ContListener elementRemoved

+ ContListener elementReplaced

Every listener type has a corresponding Event struct type that contains information about the
event. When a listener method is called, an instance of this Event type is passed as a parameter. In
the Basic listener methods these Event objects can be evaluated by adding an appropriate variant
parameter to the procedure header. The following code shows how the listener methods in the
example could be implemented:

Sub ContListener disposing(oEvent)
MsgBox "disposing"
MsgBox oEvent.Dbg_Properties
End Sub

Sub ContListener_elementlnserted(oEvent)
MsgBox "elementInserted"
MsgBox oEvent.Dbg_Properties

End Sub

Sub ContListener elementRemoved(oEvent)
MsgBox "elementRemoved"
MsgBox oEvent.Dbg Properties

End Sub

Sub ContListener elementReplaced(oEvent)
MsgBox "elementReplaced"
MsgBox oEvent.Dbg Properties
End Sub
It is necessary to implement all listener methods, including the listener methods of the parent inter-
faces of a listener. Basic runtime errors will occur whenever an event occurs and no corresponding
Basic sub is found, especially with disposing (), because the broadcaster might be destroyed a
long time after the Basic program was ran. In this situation, Basic shows a "Method not found"
message. There is no indication of which method cannot be found or why Basic is looking for a
method.

We are listening for events at the basic library container. Our simple implementation for events
triggered by user actions in the Tools - Macro - Organizer dialog displays a message box with the
corresponding listener method name and a message box with the Dbg_Properties of the event
struct. For the disposing () method, the type of the event object is com.sun.star.lang.EventOb-
ject. All other methods belong to com.sun.star.container.XContainerListener, therefore the
type of the event object is com.sun.star.container.ContainerEvent. This type is derived from
com.sun.star.lang.EventObject and contains additional container related information.

If the event object is not needed, the parameter could be left out of the implementation. For
example, the disposing () method could be:
' Minimal implementation of Sub disposing

Sub ContListener disposing
End Sub

The event objects passed to the listener methods can be accessed like other struct objects. The
following code shows an enhanced implementation of the elementRemoved () method that evalu-

163

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html

ates the com.sun.star.container.ContainerEvent to display the name of the module removed
from Libraryl and the module source code:

sub ContListener ElementRemoved(oEvent)

MsgBox "Element " + oEvent.Accessor + " removed"

MsgBox "Source =" + Chr$(13) + Chr$(13) + oEvent.Element
End Sub

When the user removes Modulel, the following message boxes are displayed by
ContListener ElementRemoved():

soffice E|

Elerment Modulel remowved REM BASIC

Sub Main

End Sub

Hllustration 3.23: ContListener ElementRemoved Event Callback

When all necessary listener methods are implemented, add the listener to the broadcaster object by
calling the appropriate add method. To register an XContainerListener, the corresponding regis-
tration method at our container is addContainerListener ():

Dim oLib

oLib = BasicLibraries.Libraryl ' Libraryl must exist!
oLib.addContainerListener (oListener) ' Register the listener

The naming scheme XSomeEventListener <> addSomeEventListener () is used throughout the
g OpenOffice.org APL

The listener for container events is now registered permanently. When a container event occurs,
the container calls the appropriate method of the com.sun.star.container.XContainerLis-
tener interface in our Basic code.

3.4.4 Automation Bridge

Introduction

The OpenOffice.org software supports Microsoft’s Automation technology. This offers program-
mers the possibility to control the office from external programs. There is a range of efficient IDEs
and tools available for developers to choose from.

Automation is language independent. The respective compilers or interpreters must, however,
support Automation. The compilers transform the source code into Automation compatible
computing instructions. For example, the string and array types of your language can be used
without caring about their internal representation in Automation, which is BSTR and SAFEARRAY. A
client program that controls OpenOffice.org can be represented by an executable (Visual Basic, C+
+) or a script (JScript, VB Script). The latter requires an additional program to run the scripts, such
as Windows Scripting Host (WSH) or Internet Explorer.

UNO was not designed to be compatible with Automation and COM, although there are similari-
ties. OpenOffice.org deploys a bridging mechanism provided by the Automation Bridge to make

164 OpenOffice.org 2.3 Developer's Guide ¢ June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContainerListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/ContainerEvent.html

UNO and Automation work together. The bridge consists of UNO services, however, it is not
necessary to have a special knowledge about them to write Automation clients for OpenOffice.org.
For additional information, refer to (see 3.4.4 Professional UNO - UNO Language Bindings - Automa-
tion Bridge - The Bridge Services).

Different languages have different capabilities. There are differences in the manner that the same
task is handled, depending on the language used. Examples in Visual Basic, VB Script and JScript
are provided. They will show when a language requires special handling or has a quality to be
aware of. Although Automation is supposed to work across languages, there are subtleties that
require a particular treatment by the bridge or a style of coding. For example, JScript does not
know out parameters, therefore aArray objects have to be used. Currently, the bridge has been
tested with C++, JScript, VBScript and Visual Basic, although other languages can be used as well.

The name Automation Bridge implies the use of the Automation technology. Automation is part of
the collection of technologies commonly referred to as ActiveX or OLE, therefore the term OLE
Bridge is misleading and should be avoided. Sometimes the bridge is called COM bridge, which is
also wrong, since the only interfaces which are processed by the bridge are IUnknown and IDis-
patch.

Requirements

The Automation technology can only be used with OpenOffice.org on a Windows platform
(Windows 95, 98, NT4, ME, 2000, XP). There are COM implementations on Macintosh OS and
UNIX, but there has been no effort to support Automation on these platforms.

Using Automation involves creating objects in a COM-like fashion, that is, using functions like
CreateObject () in VB or CoCreateInstance () in C. This requires the OpenOffice.org automa-
tion objects to be registered with the Windows system registry. This registration is carried out
whenever an office is installed on the system. If the registration did not take place, for example
because the binaries were just copied to a certain location, then Automation clients will not work
correctly or not at all. Refer to 3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge -
The Service Manager Component for additional information.

A Quick Tour

The following example shows how to access OpenOffice.org functionality through Automation.
Note the inline comments. The only automation specific call is WScript.CreateObject () in the
first line, the remaining are OpenOffice.org API calls. The helper functions createstruct () and

insertIntoCell () are shown at the end of the listing
'This is a VBScript example
'The service manager is always the starting point

'If there is no office running then an office is started up
Set objServiceManager= WScript.CreateObject("com.sun.star.ServiceManager")

'Create the CoreReflection service that is later used to create structs
Set objCoreReflection= objServiceManager.createlInstance ("com.sun.star.reflection.CoreReflection")

'Create the Desktop
Set objDesktop= objServiceManager.createlnstance ("com.sun.star.frame.Desktop")

'Open a new empty writer document
Dim args ()
Set objDocument= objDesktop.loadComponentFromURL ("private:factory/swriter", " blank", 0, args)

'Create a text object
Set objText= objDocument.getText

'Create a cursor object
Set objCursor= objText.createTextCursor

'Inserting some Text

165

166

objText.insertString objCursor, "The first line in the newly created text document." & vbLf,

'Inserting a second line
objText.insertString objCursor, "Now we're in the second line", false

'Create instance of a text table with 4 columns and 4 rows
Set objTable= objDocument.createInstance("com.sun.star.text.TextTable")
objTable.initialize 4, 4

'Insert the table
objText.insertTextContent objCursor, objTable, false

'Get first row
Set objRows= objTable.getRows
Set objRow= objRows.getByIndex(0)

'Set the table background color
objTable.setPropertyValue "BackTransparent", false
objTable.setPropertyValue "BackColor", 13421823

'Set a different background color for the first row
objRow.setPropertyValue "BackTransparent"”", false
objRow.setPropertyValue "BackColor", 6710932

'Fill the first table row
insertIntoCell "Al",
insertIntoCell "B1","SecondColumn", objTable
insertIntoCell "C1","ThirdColumn", objTable
insertIntoCell "D1","SUM", objTable

"FirstColumn", objTable // insertIntoCell is a helper function, see below

objTable.getCellByName ("A2") .setValue 22.5
objTable.getCellByName ("B2") .setValue 5615.3
objTable.getCellByName ("C2") .setValue -2315.7
objTable.getCellByName ("D2") .setFormula"sum "
objTable.getCellByName ("A3") .setValue 21.5
objTable.getCellByName (" .setValue 615.3

objTable.

.setValue -315.7

(

("B3
getCellByName ("C3

("D3") .setFormula "sum "

objTable.getCellByName

"A4") .setValue 121.5
"B4") .setValue -615.3
"C4") .setValue 415.7
"D4") .setFormula "sum "

objTable.getCellByName
objTable.getCellByName
objTable.getCellByName
objTable.getCellByName

'Change the CharColor and add a Shadow
objCursor.setPropertyValue "CharColor", 255
objCursor.setPropertyValue "CharShadowed", true

'Create a paragraph break
'The second argument is a com::sun::star::text::ControlCharacter::PARAGRAPH BREAK constant
objText.insertControlCharacter objCursor, 0 , false

'Inserting colored Text.
objText.insertString objCursor, " This is a colored Text - blue with shadow" & vbLf, false

'Create a paragraph break (ControlCharacter::PARAGRAPH BREAK) .
objText.insertControlCharacter objCursor, 0, false

'Create a TextFrame.
Set objTextFrame= objDocument.createlInstance ("com.sun.star.text.TextFrame")

'Create a Size struct.

Set objSize= createStruct("com.sun.star.awt.Size") // helper function, see below
objSize.Width= 15000

objSize.Height= 400

objTextFrame.setSize (objSize)

' TextContentAnchorType.AS CHARACTER = 1
objTextFrame.setPropertyValue "AnchorType", 1

'insert the frame
objText.insertTextContent objCursor, objTextFrame, false

'Get the text object of the frame
Set objFrameText= objTextFrame.getText

'Create a cursor object
Set objFrameTextCursor= objFrameText.createTextCursor

'Inserting some Text

false

objFrameText.insertString objFrameTextCursor, "The first line in the newly created text frame.",

false
objFrameText.insertString objFrameTextCursor, _
vbLf & "With this second line the height of the frame raises.", false

'Create a paragraph break

OpenOffice.org 2.3 Developer's Guide « June 2007

'The second argument is a com::sun::star::text::ControlCharacter::PARAGRAPH BREAK constant
objFrameText.insertControlCharacter objCursor, 0 , false

'Change the CharColor and add a Shadow
objCursor.setPropertyValue "CharColor", 65536
objCursor.setPropertyValue "CharShadowed", false

'Insert another string
objText.insertString objCursor, " That's all for now !!", false

On Error Resume Next

If Err Then

MsgBox "An error occurred"
End If

Sub insertIntoCell (strCellName, strText, objTable)
Set objCellText= objTable.getCellByName (strCellName)
Set objCellCursor= objCellText.createTextCursor
objCellCursor.setPropertyValue "CharColor",16777215
objCellText.insertString objCellCursor, strText, false
End Sub

Function createStruct(strTypeName)

Set classSize= objCoreReflection.forName (strTypeName)

Dim aStruct

classSize.createObject aStruct

Set createStruct= aStruct
End Function
This script created a new document and started the office, if necessary. The script also wrote text,
created and populated a table, used different background and pen colors. Only one object is
created as an ActiveX component called com. sun.star.ServiceManager. The service manager is
then used to create additional objects which in turn provided other objects. All those objects
provide functionality that can be used by invoking the appropriate functions and properties. A
developer must learn which objects provide the desired functionality and how to obtain them. The
chapter 2 First Steps introduces the main OpenOffice.org objects available to the programmer.

The Service Manager Component

Instantiation

The service manager is the starting point for all Automation clients. The service manager requires
to be created before obtaining any UNO object. Since the service manager is a COM component, it
has a cLs1D and a programmatic identifier which is com. sun.star.ServiceManager. It is instanti-
ated like any ActiveX component, depending on the language used:

//C++

IDispatch* pdispFactory= NULL;

CLSID clsFactory= {0x82154420, 0x0FBF,0x11d4, {0x83, 0x13,0x00,0x50,0x04,0x52,0x6A,0xB4}};

hr= CoCreatelInstance(clsFactory, NULL, CLSCTX_ ALL, _ uuidof (IDispatch), (void**)s&pdispFactory):

In Visual C++, use classes which facilitate the usage of COM pointers. If you use the Active
Template Library (ATL), then the following example looks like this:

CComPtr<IDispatch> spDisp;
if (SUCCEEDED(spDisp.CoCreatelInstance ("com.sun.star.ServiceManager")))

{
// do something

}

JScript:

var objServiceManager= new ActiveXObject ("com.sun.star.ServiceManager") ;

Visual Basic:

Dim objManager As Object
Set objManager= CreateObject ("com.sun.star.ServiceManager")

VBScript with WSH:

Set objServiceManager= WScript.CreateObject ("com.sun.star.ServiceManager")

167

168

JScript with WSH:

var objServiceManager= WScript.CreateObject ("com.sun.star.ServiceManager") ;

The service manager can also be created remotely, that is. on a different machine, taking the secu-
rity aspects into account. For example, set up launch and access rights for the service manager in
the system registry (see DCOM).

The code for the service manager resides in the office executable soffice.exe. COM starts up the
executible whenever a client tries to obtain the class factory for the service manager, so that the
client can use it.

Registry Entries

For the instantiation to succeed, the service manager must be properly registered with the system
registry. The keys and values shown in the tables below are all written during setup. It is not
necessary to edit them to use the Automation capability of the office. Automation works immedi-
ately after installation. There are three different keys under HKEY CLASSES ROOT that have the
following values and subkeys:

Key Value
CLSID\{82154420-0FBF-11d4-8313-005004526AB4} "StarOffice Service Manager (Ver 1.0)"
Sub Keys

LocalServer32 "<OfficePath>\program\soffice.exe”
NotInsertable

ProgIDcom.sun.star.ServiceManager.1l "com.sun.star.ServiceManager.1l"
Programmable

VersionIndependentProgID "com.sun.star.ServiceManager"

Key Value

com.sun.star.ServiceManager "StarOffice Service Manager"

Sub Keys

CLSID "{82154420-0FBF-11d4-8313-005004526AB4}"
CurVer "com.sun.star.ServiceManager.1l"

Key Value

com.sun.star.ServiceManager.1l "StarOffice Service Manager (Ver 1.0)"
Sub Keys

CLSID "{82154420-0FBF-11d4-8313-005004526AB4}"

The value of the key CLSID\{82154420-0FBF-11d4-8313-005004526AB4}\LocalServer32
reflects the path of the office executable.

All keys have duplicates under HKEY LOCAL MACHINE\SOFTWARE\Classes\.

The service manager is an ActiveX component, but does not support self-registration. That is, the
office does not support the command line arguments -RegServer or -UnregServer.

The service manager, as well as all the objects that it creates and that originate from it indirectly as
return values of function calls are proper automation objects. They can also be accessed remotely
through DCOM.

OpenOffice.org 2.3 Developer's Guide « June 2007

From UNO Objects to Automation Objects

The service manager is based on the UNO service manager and similar to all other UNO compo-
nents, is not compatible with Automation. The service manager can be accessed through the COM
API, because the service manager is an Active X component contained in an executable that is the
OpenOffice.org. When a client creates the service manager, for example by calling

CreateObject (), and the office is not running, it is started up by the COM system. The office then
creates a class factory for the service manager and registers it with COM. At that point, COM uses
the factory to instantiate the service manager and return it to the client.

When the function IClassFactory: :CreateInstance is called, the UNO service manager is
converted into an Automation object. The actual conversion is carried out by the UNO service
com.sun.star.bridge.oleautomation.BridgeSupplier (see 3.4.4 Professional UNO - UNO
Language Bindings - Automation Bridge - The Bridge Services). The resulting Automation object
contains the UNO object and translates calls to IDispatch: : Invoke into calls to the respective
UNO interface function. The supplied function arguments, as well as the return values of the UNO
function are converted according to the defined mappings (see 3.4.4 Professional UNO - UNO
Language Bindings - Automation Bridge - Type Mappings). Returned objects are converted into Auto-
mation objects, so that all objects obtained are always proper Automation objects.

Using UNO from Automation

With the IDL descriptions and documentation, start writing code that uses an interface. This
requires knowledge about the programming language, especially how UNO interfaces can be
accessed in that language and how function calls work.

In some languages, such as C++, the use of interfaces and their functions is simple, because the IDL
descriptions map well with the respective C++ counterparts. For example, the syntax of functions
are similar, and interfaces and out parameters can also be realized. The C++ language is not the
best choice for Automation, because all interface calls have to use IDispatch, which is difficult to
use in C++. In other languages, such as VB and JScript, the 1Dispatch interface is hidden behind
an object syntax that leads to shorter and more understandable code.

Different interfaces can have functions with the same name. There is no way to call a function
which belongs to a particular interface, because interfaces can not be requested in Automation . If a
UNO object provides two functions with the same name, it is undefined which function will be
called. A solution for this issue is planned for the future.

Not all languages treat method parameters in the same manner, especially when it comes to input
parameters that are reused as output parameters. From the perspective of a VB programmer an out
parameter does not look different from an in parameter. However, to realize out parameters in
Jscript, use an Array or value Object thatis a special construct provided by the Automation
bridge. JScript does not support out parameters through calls by reference.

Calling Functions and Accessing Properties

The essence of Automation objects is the IDispatch interface. All function calls, including the
access to properties, ultimately require a call to IDispatch: : Invoke. When using C++, the use of

IDispatch is rather cumbersome. For example, the following code calls
createInstance ("com.sun.star.reflection.CoreReflection") :

OLECHAR* funcname = L”createInstance”;

DISPID id;

IDispatch* pdispFactory= NULL;

CLSID clsFactory= {0x82154420,0x0FBF,0x11d4, {0x83, 0x13,0x00,0x50,0x04,0x52,0x6A,0xB4}};

HRESULT hr= CoCreatelInstance(clsFactory, NULL, CLSCTX ALL, _ uuidof (IDispatch), (void**)&pdispFactory);

169

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/BridgeSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/BridgeSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/BridgeSupplier.html

170

if (SUCCEEDED (pdispFactory->GetIDsOfNames (IID NULL, &funcName, 1, LOCALE USER DEFAULT, &id)))
{
VARIANT paraml;
VariantInit(¶ml) ;
paraml.vt= VT BSTR;
paraml.bstrVal= SysAllocString(L"com.sun.star.reflection.CoreReflection") ;
DISPPARAMS dispparams= { ¶ml, 0, 1, 0};
VARIANT result;
VariantInit (&result);
hr= pdispFactory->Invoke(id, IID NULL, LOCALE USER DEFAULT, DISPATCH METHOD,
&dispparams, &result, NULL, O0);
}

First the COM ID for the method name createInstance () is retrieved from GetIdsOfNames, then
the ID is used to invoke () the method createInstance () .

Before calling a certain function on the IDispatch interface, get the D1sPID by calling GetIDs0Of-
Names. The DISPIDs are generated by the bridge, as required. There is no fixed mapping from
member names to DISPIDs, that is, the DISPID for the same function of a second instance of an
object might be different. Once a DISPID is created for a function or property name, it remains the
same during the lifetime of this object.

Helper classes can make it easier. The next example shows the same call realized with helper
classes from the Active Template Library:

CCombDispatchDriver spDisp(pdispFactory);

CComVariant param(L“com.sun.star.reflection.CoreReflection") ;
CComVariant result;
hr= spUnk.Invokel (L“createInstance",param, result);

Some frameworks allow the inclusion of COM type libraries that is an easier interface to Automa-
tion objects during development. These helpers cannot be used with UNO, because the SDK does
not provide COM type libraries for UNO components. While COM offers various methods to
invoke functions on COM objects, UNO supports IDispatch only.

Programming of Automation objects is simpler with VB or JScript, because the 1Dispatch interface
is hidden and functions can be called directly. Also, there is no need to wrap the arguments into
VARIANTS.

//VB
Dim objRefl As Object
Set objRefl= dispFactory.createInstance (“com.sun.star.reflection.CoreReflection”)

//JScript
var objRefl= dispFactory.createlnstance (“com.sun.star.reflection.CoreReflection”);

Pairs of get/set functions following the pattern

SomeType getSomeProperty ()
void setSomeProperty (SomeType aValue)

are handled as COM object properties.

Accessing such a property in C++ is similar to calling a method. First, obtain a DISPID, then call
IDispatch: : Invoke with the proper arguments.

DISPID dwDispID;
VARIANT value;
VariantInit (&value) ;
OLECHAR* name= L“AttrByte"“;
HRESULT hr = pDisp->GetIDsOfNames (IID NULL, &name, 1, LOCALE USER DEFAULT, &dwDispID) ;
if (SUCCEEDED (hr))
{
// Get the property
DISPPARAMS dispparamsNoArgs = {NULL, NULL, 0, 0};
pDisp->Invoke (dwDispID, IID NULL,LOCALE USER DEFAULT, DISPATCH PROPERTYGET,
&dispparamsNoArgs, &value, NULL, NULL);
// The VARIANT value contains the value of the property

// Sset the property
VARIANT value2;
VariantInit (value?2);
value2.vt= VT_UIl;
value2.bval= 10;

OpenOffice.org 2.3 Developer's Guide « June 2007

DISPPARAMS disparams;

dispparams.rgvarg = &value2;

DISPID dispidPut = DISPID_ PROPERTYPUT;
dispparams.rgdispidNamedArgs = &dispidPut;

pDisp->Invoke (dwDispID, IID NULL,LOCALE USER_DEFAULT, DISPATCH_ PROPERTYPUT,
&dispparams, NULL, NULL, NULL);

When the property is an IUnknown*,IDispatch®, or SAFEARRAYY, the flag
DISPATCH PROPERTYPUTREF must be used. This is also the case when a value is passed by reference
(VARIANT.vt = VT _BYREF | ...).

The following example shows using the ATL helper it looks simple:

CComVariant prop;

CComDispatchDriver spDisp(pDisp);

// get the property

spDisp.GetPropertyByName (L“AttrByte“, &prop) ;
//set the property

CComVariant newVal ((BYTE) 10);
spDisp.PutPropertyByName (L“AttrByte"“, &énewVal) ;

The following example using VB and]Script it is simpler:

//VB
Dim prop As Byte
prop= obj.AttrByte

Dim newProp As Byte
newProp= 10
obj.AttrByte= newProp
'or

obj.AttrByte= 10

//JScript

var prop= obj.AttrByte;
obj.AttrByte= 10;

Service properties are not mapped to COM object properties. Use interfaces, such as
com.sun.star.beans.XPropertySet to work with service properties.

Return Values

There are three possible ways to return values in UNO:
- function return values

- inout parameters

- out parameters

Return values are commonplace in most languages, whereas inout and out parameters are not
necessarily supported. For example, in JScript.

To receive a return value in C++ provide a VARIANT argument to IDispatch: : Invoke:

//UNO IDL
long func();

//

DISPPARAMS dispparams= { NULL, 0, 0, 0};

VARIANT result;

VariantInit(&result);

hr= pdisp->Invoke(dispid, IID_NULL, LOCALE_ USER_DEFAULT, DISPATCH_METHOD,
&dispparams, &result, NULL, 0);

The following example shows using VB and JScript this is simple:
//VB
Dim result As Long

result= obj.func

//JScript
var result= obj.func

171

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html

When a function has inout parameters then provide arguments by reference in C++-:

//UNO IDL
void func([inout] long val);

//C++

long longOut= 10;

VARIANT var;

VariantInit (&var) ;
var.vt= VT_BYREF | VT_I4;
var.plVal= &longOut;

DISPPARAMS dispparams= { &var, 0, 1, 0};
hr= pdisp->Invoke(dispid, IID NULL, LOCALE USER DEFAULT, DISPATCH METHOD,
&dispparams, NULL, NULL, O0);

//The value of longOut will be modified by UNO function.

The above VB code is written like this, because VB uses call by reference by default. After the call
to func (), value contains the function output:

Dim value As Long
value= 10
obj.func value

The type of argument corresponds to the UNO type according to the default mapping, cf . 3.4.4
Professional UNO - UNO Language Bindings - Automation Bridge - Type Mappings. If in doubt, use
VARIANTS.

Dim value As Variant
value= 10;
obj.func value

However, there is one exception. If a function takes a character (char) as an argument and is called
from VB, use an Integer, because there is no character type in VB. For convenience, the COM
bridge also accepts a String as inout and out parameter:

//VB

Dim value As String

// string must contain only one character
value= "A"

Dim ret As String

obj.func value

JScript does not have inout or out parameters. As a workaround, the bridge accepts JScript Array
objects. Index 0 contains the value.

// Jscript

var inout= new Array();
inout[0]=123;

obj.func(inout) ;

var value= inout[0];

Out parameters are similar to inout parameters in that the argument does not need to be initial-
ized.

//CH++

long longOut;

VARIANT var;

VariantInit (&var) ;
var.vt= VT_BYREF | VT _I4;
var.plVal= &longOut;

DISPPARAMS dispparams= { &var, 0, 1, 0};
hr= pdisp->Invoke(dispid, IID_NULL, LOCALE USER DEFAULT, DISPATCH METHOD,
&dispparams, NULL, NULL, O0);

//VB
Dim value As Long
obj.func value

//JScript

var out= new Array();
obj . func (out) ;

var value= out[0];

172 OpenOffice.org 2.3 Developer's Guide ¢ June 2007

Usage of Types

Interfaces

Many UNO interface functions take interfaces as arguments. If this is the case, there are three
possibilities to get an instance that supports the needed interface:

Ask the service manager to create a service that implements that interface.
Call a function on a UNO object that returns that particular interface.

Provide an interface implementation if a listener object is required. Refer to 3.4.4 Professional
UNO - UNO Language Bindings - Automation Bridge - Automation Objects with UNO Interfaces for
additional information.

If createInstance () is called on the service manager or another UNO function that returns an
interface, the returned object is wrapped, so that it appears to be a COM dispatch object. When it is
passed into a call to a UNO function then the original UNO object is extracted from the wrapper
and the bridge makes sure that the proper interface is passed to the function. If UNO objects are
used, UNO interfaces do not have to be dealt with. Ensure that the object obtained from a call to a
UNO object implements the proper interface before it is passed back into another UNO call.

Structs

Automation does not know about structs as they exist in other languages, for example, in C++.
Instead, it uses Automation objects that contain a set of properties similar to the fields of a C++
struct. Setting or reading a member ultimately requires a call to IDispatch: : Invoke. However in
languages, such as VB, VBScript, and JScript, the interface call is obscured by the programming
language. Accessing the properties is as easy as with C++ structs.

// VB. obj is an object that implements a UNO struct

obj.width= 100

obj.Height= 100

Whenever a UNO function requires a struct as an argument, the struct must be obtained from the
UNO environment. It is not possible to declare a struct. For example, assume there is an office
function setSize () that takes a struct of type Size. The struct is declared as follows:

// UNO IDL
struct Size
{
long Width;
long Height;
}

// the interface function, that will be called from script
void XShape::setSize(Size aSize)

You cannot write code similar to the following example (VBScript):

Class Size
Dim Width
Dim Height
End Class

'obtain object that implements Xshape

'now set the size
call objXShape.setSize(new Size) // wrong

The com.sun.star.reflection.CoreReflection service or the Bridge GetStruct function that
is called on the service manager object can be used to create the struct. The following example uses
the CoreReflection service

'VBScript in Windows Scripting Host
Set objServiceManager= Wscript.CreateObject ("com.sun.star.ServiceManager")

'Create the CoreReflection service that is later used to create structs
Set objCoreReflection= objServiceManager.createInstance ("com.sun.star.reflection.CoreReflection")

173

http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/CoreReflection.html

'get a type description class for Size

Set classSize= objCoreReflection.forName ("com.sun.star.awt.Size")
'create the actual object

Dim aSize

classSize.createObject aSize

'use aSize

aSize.Width= 100

aSize.Height= 12

'pass the struct into the function
objXShape.setSize aSize

The next example shows how Bridge GetStruct is used.

Set objServiceManager= Wscript.CreateObject ("com.sun.star.ServiceManager")
Set aSize= objServiceManager.Bridge GetStruct ("com.sun.star.awt.Size")
'use aSize

aSize.Width= 100

aSize.Height= 12

objXShape.setSize aSize

The Bridge GetStruct function is provided by the service manager object that is initially created
by CreateObject (Visual Basic) or CoCreatelnstance[Ex] (VC++).c

The corresponding C++ examples look complicated, but ultimately the same steps are necessary.
The method forName () on the CoreReflection service is called and returns a
com.sun.star.reflection.xXIdlClass which can be asked to create an instance using create0b-
Jject ():

// create the service manager of OpenOffice

IDispatch* pdispFactory= NULL;

CLSID clsFactory= {0x82154420, 0xOFBF,0x11d4, {0x83, 0x13,0x00,0x50,0x04,0x52,0x6A,0xB4}};

hr= CoCreateInstance(clsFactory, NULL, CLSCTX ALL, _ uuidof (IDispatch), (void**)&pdispFactory)

// create the CoreReflection service

OLECHAR* funcName= L"createlInstance";

DISPID id;

pdispFactory->GetIDsOfNames (IID NULL, &funcName, 1, LOCALE USER DEFAULT, &id);

VARIANT paraml;

VariantInit(¶ml);

paraml.vt= VT BSTR;

paraml.bstrVal= SysAllocString(L"com.sun.star.reflection.CoreReflection") ;

DISPPARAMS dispparams= { ¶ml, 0, 1, 0};

VARIANT result;

VariantInit(&result);

hr= pdispFactory->Invoke(id, IID_NULL, LOCALE USER DEFAULT, DISPATCH METHOD,
&dispparams, &result, NULL, O0);

IDispatch* pdispCoreReflection= result.pdispVal;

pdispCoreReflection->AddRef () ;

VariantClear (&result);

// create the struct's idl class object
OLECHAR* strforName= L"forName";
hr= pdispCoreReflection->GetIDsOfNames (IID NULL, &strforName, 1, LOCALE USER DEFAULT, &id);
VariantClear (¶ml) ;
paraml.vt= VT_BSTR;
paraml.bstrVal= SysAllocString(L"com.sun.star.beans.PropertyValue");
hr= pdispCoreReflection->Invoke(id, IID NULL, LOCALE USER DEFAULT,
DISPATCH METHOD, &dispparams, &result, NULL, 0);

IDispatch* pdispClass= result.pdispVal;
pdispClass->AddRef () ;
VariantClear (&result);

// create the struct
OLECHAR* strcreateObject= L"createObject";
hr= pdispClass->GetIDsOfNames(IID NULL, &éstrcreateObject, 1, LOCALE USER DEFAULT, &id)

IDispatch* pdispPropertyValue= NULL;

VariantClear (¶ml) ;

paraml.vt= VT DISPATCH | VT BYREF;

paraml.ppdispVal= &pdispPropertyValue;

hr= pdispClass->Invoke(id, IID NULL, LOCALE USER DEFAULT,
DISPATCH METHOD, &dispparams, NULL, NULL, 0);

// do something with the struct pdispPropertyValue contained in dispparams

//
pdispPropertyValue->Release () ;

pdispClass->Release () ;
pdispCoreReflection->Release () ;

174 OpenOffice.org 2.3 Developer's Guide ¢ June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/XIdlClass.html

pdispFactory->Release () ;

The Bridge GetStruct example.

// objectServiceManager 1is the service manager of the office
OLECHAR* strstructFunc= L"Bridge GetStruct";
hr= objServiceManager->GetIDsOfNames (IID NULL, &strstructFunc, 1, LOCALE_USER DEFAULT, &id);

VariantClear (&result);

VariantClear (¶ml) ;

paraml.vt= VT_BSTR;

paraml.bstrVal= SysAllocString(

L"com.sun.star.beans.PropertyValue") ;

hr= objServiceManager->Invoke(id, IID_ NULL,LOCALE USER_DEFAULT, DISPATCH_METHOD,
&dispparams, &result, NULL, 0);

IDispatch* pdispPropertyValue= result.pdispVal;
pdispPropertyValue->AddRef () ;

// do something with the struct pdispPropertyValue

JScript:

// struct creation via CoreReflection
var objServiceManager= new ActiveXObject ("com.sun.star.ServiceManager") ;
var objCoreReflection= objServiceManager.createInstance ("com.sun.star.reflection.CoreReflection");

var classSize= objCoreReflection.forName ("com.sun.star.awt.Size");

var outParam= new Array();

classSize.createObject(outParam) ;

var size= outParam[0];

//use the struct

size.Width=111;

size.Height=112;
e S

// struct creation by bridge function

var objServiceManager= new ActiveXObject ("com.sun.star.ServiceManager") ;
var size= objServiceManager.Bridge_GetStruct("com.sun.star.awt.Size");
size.Width=111;

size.Height=112;

Using Automation Objects From UNO

This language binding offers a way of accessing Automation objects from UNO. For an Automa-
tion object to be usable, it must be properly registered on the system and have a programmatic
identifier (Progld) with which an instance can be created. From UNO, all Automation objects are
accessed via com.sun.star.script.XInvocation. XInvocation is a scripting interface that is intended
for dynamically performing calls similar to IDispatch. Since StarBasic uses XInvocation to
communicate with objects, Automation objects can be used from StarBasic.

Instantiation

To obtain an instance of an Automation object it is easiest to use the service
com.sun.star.bridge.oleautomation.Factory. It provides an XMultiServiceFactory interface which is
used to get the desired object. For example:

//C++

Reference<XInterface> xInt = serviceManager->createlnstance (
OUString: :createFromAscii ("com.sun.star.bridge.oleautomation.Factory")) ;

Reference<XMultiServiceFactory> automationFactory(xInt, UNO_QUERY) ;
if (automationFactory.is())
{

Reference<XInterface> xIntApp = automationFactory->createInstance (

OUString: :createFromAscii ("Word.Application")) ;

Reference< XInvocation > xInvApp(xXIntApp, UNO QUERY) ;
// call methods on the Automation object.

175

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Factory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Factory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Factory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html

176

In StarBasic it looks quite simple:

'StarBasic
Dim automationFactory As Object
Set automationFactory = createUnoService ("com.sun.star.bridge.oleautomation.Factory"

Dim objApp As Objects
Set objApp = automationFactory.createInstance ("Word.Application")
'call methods on the Automation object

Accessing Automation Objects

All Automation objects are accessed through com.sun.star.script.XInvocation interface. The func-
tion getIntrospection is not implemented. To call a method, invoke is used. invoke is also used to
access properties with additional arguments. The methods setValue and getValue set or retrieve a
property value. These methods can only be used with properties that do not have additional argu-
ments.

hasMethod returns true for a name that represents a method or a property with arguments. And
last, hasProperty returns true for a name that represents a property with no arguments. Refer to
the IDL documentation for more information about XInvocation.

Properties with Arquments

Unlike UNO properties, Automation properties can have arguments. Therefore, setValue and
getValue method are not suitable for those properties. Instead invoke is used. If a property takes
arguments, then hasProperty returns false and hasMethod returns true. invoke must also be used
if the arguments of the property are optional and not provided in the call.

The bridge must recognize a write operation on a property. To achieve this, the caller has to
provide the actual property value (not additional arguments) in a structure of type
com.sun.star.bridge.oleautomation.PropertyPutArgument. Similar to IDispatch: : Invoke,
the property value must be the last in the argument list. For example:

// MIDL

[propget, ...] HRESULT Item([in] VARIANT vall, [out, retval] VARIANT* pVal);
[propput, ...] HRESULT Item([in] VARIANT vall, [in] VARIANT newVal) ;

// C++

Sequence< sal Intl6> seqglndices;

Sequence<Any>7serut;

//Prepare arguments

Any arArgs[2];

arArgs[0] <<= makeAny((sal Int32) 0);

arArgs[l] <<= PropertyPutAfgument(makeAny((saliInt32) 0)):
Sequence<Any> segArgs (arArgs, 2);

//obj is a XInvocation of an Automation object
obj->invoke (OUString::createFromAscii ("Item"), segArgs, seqglndices, seqOut);

//now get the property value

Any arGet([l];

arGet [0] <<= makeAny((sal Int32) 0);

Sequence<Any> seqGet (arGet, 1);

Any retVal = obj->invoke (OUString::createFromAscii ("Item"), seqgGet, seqgIndices, seqOut);

In StarBasic, PropertyPutArgument is implicitly used:

'StarBasic
obj.Item(0) = 0

Dim propval As Variant
propval = obj.Item(0)

The property value that is obtained in a property get operation is the return value of invoke.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/PropertyPutArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/PropertyPutArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/PropertyPutArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/PropertyPutArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/PropertyPutArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/PropertyPutArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasMethod
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasMethod
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasMethod
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasProperty
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasProperty
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasProperty
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#setValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#setValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#setValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasProperty
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasProperty
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasProperty
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasMethod
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasMethod
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#hasMethod
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#setValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#setValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#setValue
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getIntrospection
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getIntrospection
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#getIntrospection
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html

Optional Parameters, Default Values, Variable Argument Lists

The bridge supports all these special parameters. Optional parameters can be left out of the argu-
ment list of invoke. However, if a value is omitted, then all following arguments from the param-
eter list must also be omitted. This only applies for positional arguments and not for named argu-
ments.

If the Automation object specifies a default value for an optional parameter, then the bridge
supplies it, if no argument was provided by the caller.

If a method takes a variable argument list, then one can provide the respective UNO arguments as
ordinary arguments to invoke. IDispatch: : Invoke would require those arguments in a SAFE-
ARRAY.

Named Arguments

To provide named arguments in an invoke call, one has to use instances of
com.sun.star.bridge.oleautomation.Named Argument for each argument. This is the struct in
UNOIDL:

module com { module sun { module star { module bridge { module oleautomation {

struct NamedArgument

{

/** The name of the argument, for which
<member>NamedArgument: :Value</member> is intended.
w
string Name;

/** The value of the argument whoose name is the one as contained in the
member <member>Name</member>.
=/
any Value;

In a call both, named arguments and positional arguments can be used together. The order is, first
the positional arguments (the ordinary arguments), followed by named arguments. When named
arguments are used, then arguments can be omitted even if arguments are provided that follow
the omitted parameter. For example, assume that a method takes five arguments, which are all
optional, then the argument lists for XInvocation could be as follows:

» all provided: {A, B, C, D, E}

= arguments omitted: {A,B,C,D} or {A,B} but not {A, C, D}
» named arguments : {nA, nC, nB, nD}, {nC, nD}

» mixed arguments: { A, B, nD}, {A, nC}

Named arguments can also be used with properties that have additional arguments. However, the
property value itself cannot be a named argument, since it is already regarded as a named argu-
ment. Therefore, is is always the last argument .

Type Mappings

When a UNO object is called from an Automation environment, such as VB, then depending on the
signature of the called method, values of Automation types are converted to values of UNO types.
If values are returned, either as out-arguments or return value, then values of UNO types are
converted to values of Automation types. The results of these conversions are governed by the
values to be converted and the respective type mapping.

177

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/NamedArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/NamedArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/NamedArgument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke

The type mapping describes how a type from the Automation environment is represented in the
UNO environment and vice versa. Automation types and UNO types are defined in the respective
IDL languages, MIDL and UNO IDL. Therefore, the type mapping will refer to the IDL types.

The IDL types have a certain representation in a particular language. This mapping from IDL types
to language specific types must be known in order to use the Automation bridge properly.
Languages for which a UNO language binding exists will find the mapping in the language
binding documentation. Automation capable languages can provide information about how Auto-
mation types are to be used (for example, Visual Basic, Delphi).

Some Automation languages may not provide a complete mapping for all Automation types. For
example, JScript cannot provide float values. If you use C or C++, then all Automation types can be
used directly.

A method call to an Automation object is performed through IDispatch: : Invoke. Invoke takes an
argument of type DISPPARAMS, which contains the actual arguments for the method in an array of
VARIANTARG. These VARIANTARGS are to be regarded as holders for the actual types. In most Auto-
mation languages you are not even aware of IDispatch. For example:

//UNO IDL

string func([in] long value) ;

//VB

Dim value As Long

value= 100

Dim ret As String

ret= obj.func(value)

In this example, the argument is a long and the return value is a string. That is,

IDispatch: : Invoke would receive a VARIANTARG that contains a long and returns a VARIANT that

contains a string.

When an Automation object is called from UNO through com.sun.star.script.XInvocation:invoke,
then all arguments are provided as anys. The any, similiar to the VARIANTARG, acts as a holder for
the actual type. To call Automation objects from UNO you will probably use StarBasic. Then the
XInvocation interface is hidden, as in IDispatch in Visual Basic.

The bridge converts values according to the type mapping specified at 3.4.4 Professional UNO -
UNO Language Bindings - Automation Bridge - Type Mappings - Default Mappings. Moreover, it tries
to coerce a conversion if a value does not have a type that conforms with the default mapping
(3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge - Type Mappings - Conversion
Mappings).

In some situations, it may be necessary for an Automation client to tell the bridge what the argu-
ment is supposed to be. For this purpose you can use the Value Object (3.4.4 Professional UNO -
UNO Language Bindings - Automation Bridge - Type Mappings - Value Objects).

Default Mappings

The following table shows the mapping of UNO and Automation types. It is a bidirectional
mapping (which is partly true for the UNO sequence, which will be explained later on) and there-
fore it can be read from left to right and vice versa. The mapping of Automation types to UNO
types applies when:

A method of a UNO object is called from an Automation environment and values are passed
for in or in/out parameters.

A method of an Automation object is called from the UNO environment and the method
returns a value.

A method of an Automation object is called from the UNO environment and the method
returns values in in/out or out - parameters.

178 OpenOffice.org 2.3 Developer's Guide * June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html#invoke

The mapping of UNO types to Automation types applies when:

A method of an Automation object is called from an UNO environment and values are passed
for in or in/out-parameters.

A method of a UNO object is called from an Automation environment and the method returns
a value.

A method of a UNO object is called from an Automation environment and the method returns
values in in/out or out-parameters.

Automation IDL Types UNO IDL Types
boolean boolean
unsigned char byte
double double
float float
short short
unsigned short
long long
unsigned long
BSTR string
short char
long enum
IDispatch com.sun.star.script.XInvocation, UNO interface
struct
sequence<type>
type
IUnknown com.sun.star.uno.XInterface

SAFEARRAY (VARIANT) sequence< type >

SAFEARRAY (type)

DATE com.sun.star.bridge.oleautomation.Date

cY com.sun.star.bridge.oleautomation.Currency
Decimal com.sun.star.bridge.oleautomation.Decimal
SCODE com.sun.star.bridge.oleautomation.SCode
VARIANT all of the above types or any

all of the above types any

The following sections discuss the respective mappings in more detail.

Mapping of Simple Types

Many languages have equivalents for the IDL simple types, such as integer and floating point
types. Some languages, however, may not support all these types. For example, JScript is a typeless
language and only recognizes a general number type. Internally, it uses four byte signed integer
values and double values to represent a number. When a UNO method is called that takes a float
as an argument, and that value is at some point returned to the caller, then the values may differ
slightly. This is because the bridge converts the double to a float, which is eventually converted
back to a double.

179

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/SCode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Decimal.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Currency.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Date.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html

180

If a UNO method takes an any as argument and the implementation expects a certain type within
the any, then the bridge is not always able to provide the expected value. Assuming, that a UNO
method takes an any that is supposed to contain a short and the method is to be called from
JScript, then the bridge will provide an any containing a four byte integer. This may result in an
exception from the initiator of the call The solution is to use a Value Object (3.4.4 Professional UNO
- UNO Language Bindings - Automation Bridge - Type Mappings - Value Objects).

Unlike Automation, there are unsigned integer types in UNO. To provide a positive value that
exceeds the maximum value of the corresponding signed type, you have to use the corresponding
negative value. For example, to call the following UNO function in VB with the value 32768
(0x8000) you need to pass -32768 .

//UNO IDL

void foo (unsigned short value);

'VB

Dim val As Integer 'two byte signed integer
val = -32768

obj.foo(val)

The rule for calculating the negative equivalent is:
signed_value = unsigned_value - (max_unsigned +1)

In the preceding example, unsigned_value is the value that we want to pass, and which is 32768.
This value is one too many for the VB type Integer, that is why we have to provide a negative
value. max_unsigned has the value 65535 for a two byte integer. So the equation is

-32768 = 32768 - (65535 + 1)

Alternatively you can use a type with a greater value range. The Automation bridge will then
perform a narrowing conversion.

Dim val As Long 'four byte signed integer
val = 32768
obj.foo(val) 'expects a two byte unsigned int

For more information about conversions see chapter 3.4.4 Professional UNO - UNO Language Bind-
ings - Automation Bridge - Type Mappings - Conversion Mappings.

Mapping of hyper and Decimal

Automation does not have an 8 byte integer value that compares to a UNO hyper. However, the
Automation type Decimal has a value space big enough to represent a hyper. Therefore, when
calling UNO methods from Automation, use Decimal whenever the UNO method requires a hyper
or unsigned hyper.

The Decimal type may not be supported by all Automation capable language. Examples are JScript
and VBScript, which should not be used when calling these UNO methods. This is because
provided values may be rounded and hence the results are tainted.

Visual Basic has the restriction that Decimal variables can only be declared as Variants. The assign-
ment of a value has to be done using the CDec function. Furthermore, VB does not allow the use of
integer literals bigger than 4 bytes. As a workaround, you can provide a string that contains the
value. For example:

Dim aHyper As Variant
aHyper = CDec (%“9223372036854775807")

Visual Basic .NET has the build-in type decimal and does not restrict the integer literals.

When Automation objects are called from UNO, then the
com.sun.star.bridge.oleautomation.Decimal type can be used to provide arguments with the Auto-
mation arguments of type Decimal. Returned Decimal values are converted to
com.sun.star.bridge.oleautomation.Decimal .

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Decimal.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Decimal.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Decimal.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Decimal.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Decimal.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/oleautomation/Decimal.html

Mapping of String

A string is a data structure that is common in programming languages. Although the idea of a
string is the same, the implementations and their creation can be quite different. For example, a C+
+ programmer has a range of possibilities to choose from (for example, char*, char[], wchar t¥*,
wchar_t[],std::string, CString, BSTR), whereas a JScript programmer can only use one kind
of string. To use Automation across languages, it is necessary to use a string type that is common
to all those languages, and that has the same binary representation. This particular string is
declared as BsTR in COM. The name can be different, depending on the language. For example, in
C++ there is a BSTR type, in VB it is called string, and in JScript every string defined is a BSTR.
Refer to the documentation covering the BSTR’s equivalent if using an Automation capable
language not covered by this document.

Mapping of Interfaces and Structures

UNO interfaces or structures are represented as dispatch objects in the Automation environment.
That is, the converted value is an object that implements IDispatch. If an UNO interface was
mapped, then you also can access all other UNO interfaces of the object through IDispatch. In other
words, the dispatch object represents the UNO object with all its interfaces and not only the one
interface which was converted.

If a dispatch object, which actually is a UNO object or a structure, is now passed back to UNO,
then the bridge will extract the original UNO interface or structure and pass it on. Since the UNO
dispatch object represents the whole UNO object, that is, all its supported interfaces, you can use
the dispatch object as argument for all those interface types. For example:

//UNO IDL methods
XFoo getFoo () ;
void doSomething (XBar arg) ;

'VB
Dim objUno As Object
Set objUno = objOtherUnoObject.getFoo ()

'The returned interface belongs to an UNO object which implements XFoo and XBar.
'Therefore we can use objUno in this call:
call objOtherUnoObject.doSomething (objUno)

If Automation objects are called from UNO, then the called methods may return other Automation
objects, either as TUnknown* or IDispatch*. These can then be used as arguments in later calls to
Automation objects or you can perform calls on them. In case of TUnknown, this is only possible if
the object also supports IDispatch. To make calls from UNO, the XInterface must first be queried
for XInvocation. When a method returns IDispatch, then on UNO side a XInvocation is received
and can be called immediately.

When these interfaces are passed back as arguments to a call to an Automation object, then the
bridge passes the original T1Unknown or IDispatch pointer. This is dependent upon what the
parameter type is. Remember, calls can only be performed on Automation objects. Therefore
IUnknown and IDispatch are the only possible COM interfaces. If the expected parameter is a
VARIANT, then it will contain an T1Unknown* if the Automation object was passed as TUnknown*
into the UNO environment. It will contain an IDispatch* if the object was passed as IDispatch*.
For example:

//MIDL
HRESULT getUnknown ([out,retval] IUnknown ** arg);
HRESULT getDispatch([out, retval] IDispatch ** arg);

HRESULT setUnknown ([in] IUnknown * arg);
HRESULT setDispatch([in] IDispatch * arg);
HRESULT setVariant ([in] VARIANT arg);

'StarBasic

Dim objUnknown As Object
Dim objDispatch As Object

181

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

182

Set objUnknown = objAutomation.getUnknown ()
Set objDispatch = objAutomation.getDispatch ()

objAutomation.setUnknown objUnknown 'Ok
objAutomation.setDispatch objUnknown 'Ok, if objUnknow supports IDispatch,

otherwise a CannotConvertException will be thrown.
objAutomation.setUnknown objDispatch 'OK

objAutomation.setVariant objUnknown 'VARTYPE is VT Unknown
objAutomation.setVariant objDispatch 'VARTYPE is VT DISPATCH

For the purpose of receiving events (listener) it is possible to implement UNO interfaces as
dispatch objects 3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge - Automation
Objects with UNO Interfaces. That type of object is used as an argument in UNO functions where
particular interface types are required. The bridge will make sure that the proper interface is
provided to the UNO function. If the UNO interface is then passed back into the Automation envi-
ronment, the original Automation object will be passed.

If the Automation object is passed as argument for an any, then the any will contain an XInterface
if the object was passed as IUnknown or the any contains an XInvocation if the object was passed as
IDispatch. If, for example, the UNO interface xFoo is implemented as a dispatch object, an
instance to UNO as Any parameter is passed, and the Any contains XFoo rather then XInvocation,
then the dispatch object must be placed in a Value Object (3.4.4 Professional UNO - UNO Language
Bindings - Automation Bridge - Type Mappings - Value Objects). For example:

//UNO method
void foo([in] any)

'objUno contains an interface with the method foo.
'It expects that the argument with of type any contains an XFoo

'objFoo is a dispatch object implementing XFoo.

Dim objValueObject As Object
Set objValueObject = objServiceManager.Bridge GetValueObject ()
objValueObject.set “XFoo”, objFoo

objUno.foo objValueObject

Null pointers are converted to null pointers of the required type. That is, if an IDispatch pointer
with the value null is passed as an argument to a UNO method then the resulting argument is a
null pointer of the expected type. This also applies to UNO interface pointers, which are passed in
calls to Automation objects. When a UNO method takes a struct as an argument and it is called
from the Automation environment where a null pointer (IDispatch, or ITUnknown) was supplied,
then the UNO method receives a struct that was default constructed.

Mapping of Sequence

Arrays in Automation have a particular type. The SAFEARRAY. A SAFEARRAY array is used when a
UNO function takes a sequence as an argument. To create a SAFEARRAY in C++, use Windows API
functions. The C++ name is also SAFEARRAY, but in other languages it might be named differently.
In VB for example, the type does not even exist, because it is mapped to an ordinary VB array:

Dim myarr(9) as String

JScript is different. It does not have a method to create a SAFEARRAY. Instead, JScript features an
Array object that can be used as a common array in terms of indexing and accessing its values. It is
represented by a dispatch object internally. JScript offers a vBArray object that converts a SAFE-
ARRAY into an Array object, which can then be processed further.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

The Automation bridge accepts both, SAFEARRAY and Array object, for arguments whose UNO
type is a sequence.

If a SAFEARRAY is obtained in JScript as a result of a call to an ActiveX component or a VB Script function
(for example, the Internet Explorer allows JScript and VBS code on the same page), then it can also be used
as an argument of a UNO function without converting it to an Array object.

UNO does not recognize multi-dimensional sequences. Instead, a sequences can have elements
that are also sequences. Those inner sequences can have different lengths, whereas the elements
of a dimension of a multi-dimensional array are all the same length.

To provide an argument for a sequence of sequences, a SAFEARRAY containing VARIANTS of SAFE-
ARRAYs has to be created. For example:

//UNO method
void foo([in] sequence< sequence< long > > value);

Dim seqg(l) As Variant
Dim arl(3) As Long

Dim ar2(4) As Long
'fill arl, ar2

arl
ar2

seq(0)
seq (1)

objUno.foo seq

The array seq corresponds to the outer sequence and contains two VARIANTs, which in turn
contain SAFEARRAYs of different lengths.

It is also possible to use a multi-dimensional SAFEARRAY if the elements of the sequence are all the
same length:

Dim seqg(9, 1) As Long
'fill the sequence

objUno.foo seq

Be aware that Visual Basic uses a column-oriented ordering in contrast to C. That is, the C equiva-
lent to the VB array is

long seq[2][10]
The highest dimension in VB is represented by the right-most number.

This language binding specifies that the outer sequence corresponds to the highest dimension.
Therefore, the VB array seq(9,1) would map to a sequence of sequences where the outer sequence
has two elements and the inner sequences each have ten elements.

Returned sequences are converted into SAFEARRAYs containing VARIANTs. If a sequence of
sequences is returned, then the VARIANTs contain again SAFEARRAYS.

To process a returned SAFEARRAY in Jscript, use the VBArray object to convert the SAFEARRAY into
a JScript Array.

When a method of an Automation object is called from UNO and a parameter is a SAFEARRAY,
then a sequence is used on the UNO side. The element type of the sequence should correspond to
the element type of the SAFEARRAY according to the default mapping. If it does not, the bridge tries
to convert the elements into the expected element type.

If the parameter is a multi dimensional SAFEARRAY, then one has to provide a sequence containing
sequences has to be provided. The number of nested sequences corresponds to the number of
dimensions. Since the elements of a dimension have the same length, the sequences that represent
that dimension should also have the same length. For example, assume the expected SAFEARRAY
can be expressed in C as

183

long ar[2][10]

Then the outer sequence must have two elements and each of those sequences has 10 elements.
That a returned sequence maps to a SAFEARRAY of VARIANTS is not ideal because it is ambiguous
when the array is passed back to UNO. However, the bridge solves this problem by using UNO
type information. For example, a returned sequence of longs will result in a SAFEARRAY of VARI-
ANTs containing long values. When the SAFEARRAY is passed in a method as an argument for a
parameter of type sequence<long > then it is converted accordingly. However, if the parameter is
an any, then the bridge does not have the necessary type information and converts the SAFEARRAY
to sequence<any>. That is, the called method receives an any containing a sequence<any>. If the
method now expects the any to contain a sequence<long> then it may fail. This is confusing if
there are pairs of methods like getxxx and setxxx, which take any arguments. Then you may get
a SAFEARRAY as a return value, which cannot be used in the respective setxxx call. For example:
//UNO IDL

any getByIndex () ;
void setByIndex([in] any value);

'VB

Dim arLong () As Variant

arLong = objUno.getByIndex () 'object returns sequence<long> in any

objUno.setByIndex arLong 'object receives sequence<any> in any and may cause an error.

To solve this problem, wrap the argument in a Value Object (3.4.4 Professional UNO - UNO
Language Bindings - Automation Bridge - Type Mappings - Value Objects):

'VB
Dim arLong () As Variant
arLong = objUno.getByIndex () 'object returns sequence<long> in any

Dim objValueObject As Object
Set objValueObject = objServiceManager.Bridge GetValueObject ()

objValueObject.set “[]long”, arLong
objUno.setByIndex objValueObject 'object receives sequence<long>
Mapping of type

Since there is no counterpart to the UNO type among the Automation types, it is mapped to an
object. The object implements IDispatch and a private tagging interface that is known to the
bridge. Therefore, whenever an object is passed in a call to a UNO object the bridge can determine
whether it represents a type. To obtain a type one calls Bridge CreateType on the service
manager object and provides the name of the type. For example:

'Visual Basic

Dim objType
Set objType = objServiceManager.Bridge_CreateType (“com.sun.star.uno.XInterface”)

In case the provided argument does not represent a valid type, the call produces an error.
If a UNO method returns a type, either as return value or out - parameter, then it is automatically

converted to an object.

//UNOIDL
type foo([out] type t)

'Visual Basic
Dim objParam As Object

Dim objReturn As Object
Set objReturn = object.foo (objParam)

Conversion Mappings

As shown in the previous section, Automation types have a UNO counterpart according to the
mapping tables. If a UNO function expects a particular type as an argument, then supply the corre-
sponding Automation type. This is not always necessary as the bridge also accepts similar types.
For example:

184 OpenOffice.org 2.3 Developer's Guide ¢ June 2007

//UNO IDL
void func(long value) ;

// VB
Dim value As Byte
value = 2

obj.func vallLong

The following table shows the various Automation types, and how they are converted to UNO IDL
types if the expected UNO IDL type has not been passed.

Automation IDL Types UNO IDL
(source) Types (target)
boolean (true, false) boolean
unsigned char, short, long, float, double: 0 = false, > 0 = true

string: "true" = true, "false" = false

boolean, unsigned char, short, long, float, double, string byte
double, boolean, unsigned char, short, long, float, string double
float, boolean, unsigned char, short, string float
short, unsigned char, long, float, double, string short
long, unsigned char, long, float, double, string long
BSTR, boolean, unsigned char, short, long, float, double string

short, boolean, unsigned char, long, float, double, string (1 character | char
long)

long, boolean, unsigned char, short, float, double, string enum

When you use a string for a numeric value, it must contain an appropriate string representation of
that value.

Floating point values are rounded if they are used for integer values.

Be careful using types that have a greater value space than the UNO type. Do not provide an argu-
ment that exceeds the value space which would result in an error. For example:

// UNO IDL
void func([in] byte value);

// VB

Dim value as Integer

value= 1000

obj.func value 'causes an error

The conversion mappings only work with in parameters, that is, during calls from an Automation
environment to a UNO function, as far as the UNO function takes in parameters.

Client-Side Conversions

The UNO IDL description and the defined mappings indicate what to expect as a return value
when a particular UNO function is called. However, the language used might apply yet another
conversion after a value came over the bridge.

// UNO IDL
float func();

// VB
Dim ret As Single
ret= obj.func() 'no conversion by VB

Dim ret2 As String
ret2= obj.func() 'VB converts float to string

When the function returns, VB converts the £1oat value into a string and assigns it to ret2. Such
a conversion comes in useful when functions return a character, and a string is preferred instead of
a VB Integer value.

185

186

// UNO IDL
char func();

// VB

Dim ret As String

ret= obj.func() 'VB converts the returned short into a string

Be aware of the different value spaces if taking advantage of these conversions. That is, if the value
space of a variable that receives a return value is smaller than the UNO type, a runtime error might
occur if the value does not fit into the provided variable. Refer to the documentation of your
language for client-side conversions.

Client-side conversions only work with return values and not with out or inout parameters. The
current bridge implementation is unable to transport an out or inout parameter back to Automa-
tion if it does not have the expected type according to the default mapping.

Another kind of conversion is done implicitly. The user has no influence on the kind of conversion.
For example, the scripting engine used with the Windows Scripting Host or Internet Explorer uses
double values for all floating point values. Therefore, when a UNO function returns a f1loat value,
then it is converted into a double which may cause a slightly different value. For example:

// UNO IDL

float func(); //returns 3.14

// JScript

var ret= obj.func(); // implicit conversion from float to double, ret= 3.14000010490417
Value Objects

A Value Object is an Automation object which can be obtained from the bridge. It can hold a value
and a type description, hence it resembles a UNO any or a VARIANT. A Value Object can stand in
for all kinds of arguments in a call to a UNO method from a automation language. A Value Object
is used when the bridge needs additional information for the parameter conversion. This is the
case when a UNO method takes an any as argument. In many cases, however, one can do without
a Value Object if one provides an argument which maps exactly to the expected UNO type
according to the default mapping. For example, a UNO method takes an any as argument which is
expected to contain a short. Then it would be sufficient to provide a Long in Visual Basic. But in
JScript there are no types and implicitly a four byte integer would be passed to the call. Then the
any would not contain a short and the call may fail. In that case the Value Object would guarantee
the proper conversion.

A Value Object also enables in/out and out parameter in languages which only know in-parame-
ters in functions. JScript is a particular case because one can use Array objects as well as Value
Objects for those parameters.

A value Object exposes four functions that can be accessed through 1Dispatch. These are:

void Set([in]VARIANT type, [in]VARIANT value) ;
Assigns a type and a value.

void Get ([out,retval] VARIANT* val);
Returns the value contained in the object. Get is used when the value Object was used as
inout or out parameter.

void InitOutParam();

Tells the object that it is used as out parameter.

void InitInOutParam([in]VARIANT type, [in]VARIANT value);

Tells the object that it is used as inout parameter and passes the value for the in parameter,
as well as the type.

OpenOffice.org 2.3 Developer's Guide « June 2007

When the value Object is used as in or inout parameter then specify the type of the value. The
names of types correspond to the names used in UNO IDL, except for the object name. The
following table shows what types can be specified.

Name (used with Value Object) UNO IDL
char char

boolean boolean

byte byte

unsigned unsigned byte
short short

unsigned short
long

unsigned long

unsigned short
long

unsigned long

string string

float float

double double

any any

object some UNO interface

To show that the value is a sequence, put brackets before the names, for example:

lchar - sequence<char>

[
[1[lchar - sequence < sequence <char > >
[

1[][lchar - sequence < sequence < sequence < char > > >

The value Objects are provided by the bridge and can be obtained from the service manager
object. The service manager is a registered COM component with the Progld

com.sun.star.ServiceManager (Chapter 3.4.4 Professional UNO - UNO Language Bindings - Auto-
mation Bridge - The Service Manager Component). For example:

// JScript

var valueObject= objSericeManager.Bridge GetValueObject();

To use a value Object asin parameter, specify the type and pass the value to the object:

// UNO IDL

void doSomething([in] sequence< short > ar);

// JScript

var value= objServiceManager.Bridge_ GetValueObject () ;

var array= new Array(l,2,3);
value.Set (" []short",array);
object.doSomething (value) ;

In the previous example, the value Object was defined to be a sequence of short values. The

array could also contain value Objects again:

var valuel= objServiceManager.Bridge GetValueObject () ;
var value2= objServiceManager.Bridge GetValueObject () ;
valuel.Set ("short“, 100);

value2.Set ("short", 111);

var array= new Array();

array[0]= valuel;

array[l]= value2;

var allValue= objServiceManager.Bridge GetValueObject ()
allvalue.Set (" []short™, array);

object.doSomething (allValue) ;

If a function takes an out parameter, tell the value Object like this:

// UNO IDL
void doSomething([out] long);

// JScript
var value= objServiceManager.Bridge GetValueObject ();
value.InitOutParam() ;

187

188

object.doSomething (value) ;
var out= value.Get () ;

When the value Object is an inout parameter, it needs to know the type and value as well:

//UNO IDL
void doSomething([inout] long) ;

//JScript

var value= objServiceManager.Bridge GetValueObject ();
value.InitInOutParam("long", 123);
object.doSomething (value) ;

var out= value.Get();

Exceptions and Errorcodes

UNO interface functions may throw exceptions to communicate an error. Automation objects
provide a different error mechanism. First, the IDispatch interface describes a number of error
codes (HRESULTS) that are returned under certain conditions. Second, the Invoke function takes an
argument that can be used by the object to provide descriptive error information. The argument is
a structure of type EXCEPINFO and is used by the bridge to convey exceptions being thrown by the
called UNO interface function. In case the UNO method throws an exception the bridge fills
EXCEPINFO with these values:

EXCEPINFO: :wCode = 1001
EXCEPINFO: :bstrSource = [automation bridge]

EXCEPINFO: :bstrDescription = type name of the exceptions + the message of the exception
(com::sun::star::uno::Exception::message)

Also the returned error code will be DISP E EXCEPTION .

Since the automation bridge processes the Invoke call and calls the respective UNO method in the

end, there can be other errors which are not caused by the UNO method itself. The following table
shows what these errors are and how they are caused.

OpenOffice.org 2.3 Developer's Guide « June 2007

HRESULT

DISP E EXCEPTION

DISP_E NONAMEDARGS

DISP _E BADVARTYPE

DISP_E_BADPARAMCOUNT

Reason

UNO interface function or property access function threw
an exception and the caller did not provide an
EXCEPINFO argument.

Bridge error. A ValueObject could not be created when the
client called Bridge GetValueObject.

Bridge error. A struct could not be created when the client
called Bridge GetStruct

Bridge error. A wrapper for a UNO type could not be
created when the client called Bridge CreateType

Bridge error. The automation object contains a UNO object
that does not support the XInvocation interface. Could
be a failure of com.sun.star.script.Invocation
service.

In JScript was an Array object passed as inout param and
the bridge could not retrieve the property 0 .

A conversion of a VARIANTARG (DISPPARAMS structure)
failed for some reason.

Parameter count does not tally with the count provided by
UNO type information (only when one DISPPARAMS
contains VT DISPATCH). This is a bug.

DISP_E BADPARAMCOUNT should be returned.

The caller provided named arguments for a call to a
UNO function.

Conversion of VARIANTARGs failed.

Bridge error: Caller provided a ValueObject and the
attempt to retrieve the value failed. This is possibly a bug.
DISP_E EXCEPTION should be returned.

A member with the current name does not exist according
to type information. This is a bug.
DISP_E MEMBERNOTFOUND should be returned.

The argument in Bridge_CreateType was no string or
could not be converted into one

A property was assigned a value and the caller provided
null or more than one arguments.

The caller did not provide the number of arguments as
required by the UNO interface function.

Bridge_CreateType was called wher the number of
arguments was not one.

DISP E MEMBERNOTFOUND

DISP_E TYPEMISMATCH

Invoke was called with a DISPID that was not issued by
GetIDsOfName

There is no interface function (also property access func-
tion) with the name for which Invoke is currently being
called.

The called provided an argument of a false type.

189

http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/Invocation.html

190

HRESULT

DISP_E_OVERFLOW

E_UNEXPECTED

E_POINTER

S OK

HRESULT

Reason

An argument could not be coerced to the expected type.
Internal call to XInvocation: : invoke resulted in a
CannotConvertException being thrown. The field
reason has the value OUT_OF RANGE which means that a
given value did not fit in the range of the destination type.

[2]results from com.sun.star.script.CannotConver—
tException of XInvocation: :invoke with Fail-
Reason: : UNKNOWN.

Internal call to XInvocation: : invoke resulted in a
com.sun.star.script.CannotConvertException
being thrown. The field reason has the value UNKNOWN, which
signifies some unknown error condition.

Bridge GetValueObject or Bridge GetStruct called
and no argument for return value provided.

Ok.

Return values of IDispatch::GetIDsOfNames:

Reason

E POINTER

DISP_E UNKNOWNNAME

Caller provided no argument that receives the DISPID.

There is no function or property with the given name.

S OK

Ok.

The functions IDispatch: :GetTypeInfo and GetTypeInfoCount return E NOTIMPL.

When a call from UNO to an Automation object is performed, then the following HRESULT values
are converted to exceptions. Keep in mind that it is determined what exceptions the functions of

XInvocation are allowed to throw.

Exceptions thrown by xInvocation::invoke () and their HRESULT counterparts:

HRESULT

Exception

DISP_E_BADPARAMCOUNT
DISP_E_BADVARTYPE
DISP_E_EXCEPTION

com.sun.star.lang.IllegalArgumentException

com.sun.star.uno.RuntimeException

com.sun.star.reflection.InvocationTargetExcep—
tion

DISP_E_MEMBERNOTFOUND
DISP_E_NONAMEDARGS
DISP_E_OVERFLOW

com.sun.star.lang.IllegalArgumentException

com.sun.star.lang.IllegalArgumentException

com.sun.star.script.CannotConvertException,
reason= FailReason: :0UT_OF RANGE

DISP_E_PARAMNOTFOUND
DISP_E_TYPEMISMATCH

DISP_E_UNKNOWNINTERFACE
DISP_E_UNKNOWNLCID
DISP_E_PARAMNOTOPTIONAL

OpenOffice.org 2.3 Developer's Guide « June 2007

com.sun.star.lang.IllegalArgumentException

com.sun.star.script.CannotConvertException,
reason= FailReason: : UNKNOWN

com.sun.star.uno.RuntimeException

com.sun.star.uno.RuntimeException

com.sun.star.script.CannotConvertException,
reason= FailReason::NO DEFAULT AVAILABLE

http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/InvocationTargetException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/InvocationTargetException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/CannotConvertException.html

XInvocation::setValue () throws the same as invoke () except for:

HRESULT Exception

DISP_E_ BADPARAMCOUNT com.sun.star.uno.RuntimeException

DISP_E_ MEMBERNOTFOUND com.sun.star.beans.UnknownPropertyException
DISP_E_NONAMEDARGS com.sun.star.uno.RuntimeException

XInvocation::getValue () throws the same as invoke () except for:

HRESULT Exception

DISP_E_ BADPARAMCOUNT com.sun.star.uno.RuntimeException
DISP_E_EXCEPTION com.sun.star.uno.RuntimeException

DISP_E_ MEMBERNOTFOUND com.sun.star.beans.UnknownPropertyException
DISP_E_NONAMEDARGS com.sun.star.uno.RuntimeException
DISP_E_OVERFLOW com.sun.star.uno.RuntimeException

DISP_E_ PARAMNOTFOUND com.sun.star.uno.RuntimeException
DISP_E_TYPEMISMATCH com.sun.star.uno.RuntimeException

DISP_E_ PARAMNOTOPTIONAL com.sun.star.uno.RuntimeException

Automation Objects with UNO Interfaces

It is common that UNO functions take interfaces as arguments. As discussed in section 3.4.4 Profes-
sional UNO - UNO Language Bindings - Automation Bridge - Usage of Types, those objects are usually
obtained as return values of UNO functions. With the Automation bridge, it is possible to imple-
ment those objects even as Automation objects and use them as arguments, just like UNO objects.

Although Automation objects can act as UNO objects, they are still not fully functional UNO
components. That is, they cannot be created by means of the service manager. Also, there is no
mapping of UNO exceptions defined. That is, an UNO object implemented as automation object
cannot make use of exceptions nor can it convey them in any other way.

One use case for such objects are listeners. For example, if a client wants to know when a writer
document is being closed, it can register the listener object with the document, so that it will be
notified when the document is closing.

Requirements

Automation objects implement the IDispatch interface, and all function calls and property opera-
tions go through this interface. We imply that all interface functions are accessed through the
dispatch interface when there is mention of an Automation object implementing UNO interfaces.
That is, the Automation object still implements IDispatch only.

Basically, all UNO interfaces can be implemented as long as the data types used with the functions
can be mapped to Automation types. The bridge needs to know what UNO interfaces are
supported by an Automation object, so that it can create a UNO object that implements all those
interfaces. This is done by requiring the Automation objects to support the property

Bridge_ implementedInterfaces, which is an array of strings. Each of the strings is a fully quali-
fied name of an implemented interface. If an Automation object only implements one UNO inter-
face, then it does not need to support that property.

191

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/UnknownPropertyException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/UnknownPropertyException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html

192

You never implement com.sun.star.script.XInvocationand com.sun.star.uno.XInterface.
XInvocation cannot be implemented, because the bridge already maps IDispatch to XInvocation
internally. Imagine a function that takes an XInvocation:

// UNO IDL
void func([in] com.sun.star.script.XInvocation obj) ;

In this case, use any Automation object as argument. When an interface has this function,

void func([in] com.sun.star.XSomething obj)

the automation object must implement the functions of XSomething, so that they can be called through
IDispatch::Invoke.

Examples

The following example shows how a UNO interface is implemented in VB. It is about a listener
that gets notified when a writer document is being closed.

To rebuild the project use the wizard for an ActiveX dIl and put this code in the class module. The
component implements the com.sun.star.lang.XEventListener interface.

Option Explicit
Private interfaces(0) As String

Public Property Get Bridge ImplementedInterfaces() As Variant
Bridge ImplementedInterfaces = interfaces
End Property

Private Sub Class_Initialize()
interfaces (0) = "com.sun.star.lang.XEventListener"
End Sub

Private Sub Class_Terminate ()

On Error Resume Next

Debug.Print "Terminate VBEventListener"
End Sub

Public Sub disposing (ByVal source As Object)
MsgBox "disposing called"
End Sub

You can use these components in VB like this:

Dim objServiceManager As Object
Dim objDesktop As Object

Dim objDocument As Object

Dim objEventListener As Object

Set objServiceManager= CreateObject ("com.sun.star.ServiceManager")
Set objDesktop= objServiceManager.createlInstance ("com.sun.star.frame.Desktop")

'Open a new empty writer document

Dim args ()

Set objDocument= objDesktop.loadComponentFromURL ("private:factory/swriter", " blank", 0, args)
'create the event listener ActiveX component

Set objEventListener= CreateObject ("VBasicEventListener.VBEventListener")

'register the listener with the document
objDocument.addEventListener objEventlistener
The next example shows a JScript implementation of a UNO interface and its usage from JScript.
To use JScript with UNO, a method had to be determined to realize arrays and out parameters.
Presently, if a UNO object makes a call to a JScript object, the bridge must be aware that it has to
convert arguments according to the JScript requirements. Therefore, the bridge must know that
one calls a JScript component, but the bridge is not capable of finding out what language was used.
The programmer has to provide hints, by implementing a property with the name

_environment that has the value "JScript".

// UNO IDL: the interface to be implemented

interface XSimple : public com.sun.star.uno.XInterface

{
void funcl([in] long val, [out] long outVal);
long func2([in] sequence< long > val, [out] sequence< long > outVal);
void func3([inout]long);

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/script/XInvocation.html

}i

// JScript: implementation of XSimple
function XSimplImpl ()
{
this. environment= "JScript";
this.Bridge implementedInterfaces= new Array("XSimple");

// the interface functions
this.funcl= funcl impl;
this.func2= func2 impl;
this.func3= func3_impl;

}

function funcl impl(inval, outval)
{
//outval is an array
outval[0]= 10;

}

function func2_ impl (inArray, outArray)
{

outArray[0]= inArray;

// or

outArray[0]= new Array(1,2,3);

return 10;

}

function func3_impl (inoutval)

{
var val= inoutval[O0];
inoutval[0]= val+1l;

Assume there is a UNO object that implements the following interface function:

//UNO IDL
void doSomething([in] XSimple);

Now, call this function in JScript and provide a JScript implementation of xSimple:
<script language="JScript">

var factory= new ActiveXObject ("com.sun.star.ServiceManager") ;

// create the UNO component that implements an interface with the doSomething function
var oletest= factory.createlInstance ("oletest.OleTest");

oletest.doSomething (new XSimpleImpl ());

To build a component with C++, write the component from scratch or use a kind of framework,
such as the Active Template Library (ATL). When a dual interface is used with ATL, the imple-
mentation of IDispatch is completely hidden and the functions must be implemented as if they
were an ordinary custom interface, that is, use specific types as arguments instead of VARIANTs. If a
UNO function has a return value, then it has to be specified as the first argument which is flagged
as retval .

</script>
// UNO IDL
interface XSimple : public com.sun.star.uno.XInterface
{
void funcl([in] long val, [out] long outVal);
long func2([in] sequence< long > val, [out] sequence< long > outVal);
}i

//IDL of ATL component
[
object,
UUid (XXXXXKXXK-KXXK~XXXKX~XXXX~XXXKXXXKXKXXXXX) ,
dual,
helpstring ("ISimple Interface"),
pointer default (unique)
]
interface ISimple : IDispatch
{
[id (1), helpstring("method funcl")]
HRESULT funcl([in] long val, [out] long* outVal) ;
[id(2), helpstring("method func2")]
HRESULT func2 ([out,retval] long ret, [in] SAFEARRAY (VARIANT) val,
[out] SAFEARRAY (VARIANT) * outVal);

193

[propget, id(4), helpstring("property implementedInterfaces")]
HRESULT Bridge_implementedlnterfaces ([out, retval] SAFEARRAY (BSTR) *pVal);

DCOM

The Automation bridge maps all UNO objects to automation objects. That is, all those objects
implement the IDispatch interface. To access a remote interface, the client and server must be able
to marshal that interface. The marshaling for 1Dispatch is already provided by Windows, there-
fore all objects which originate from the bridge can be used remotely.

To make DCOM work, apply proper security settings for client and server. This can be done by
setting the appropriate registry entries or programmatically by calling functions of the security API
within the programs. The office does not deal with the security, hence the security settings can only
be determined by the registry settings which are not completely set by the office’s setup. The AppID
key under which the security settings are recorded is not set. This poses no problem because the
dcomcenfg.exe configuration tools sets it automatically.

To access the service manager remotely, the client must have launch and access permission. Those
permissions appear as sub-keys of the app1D and have binary values. The values can be edited
with dcomenfg. Also the identity of the service manager must be set to Interactive User . When
the office is started as a result of a remote activation of the service manager, it runs under the
account of the currently logged-on user (the interactive user).

In case of callbacks (office calls into the client), the client must adjust its security settings so that
incoming calls from the office are accepted. This happens when listener objects that are imple-
mented as Automation objects (not UNO components) are passed as parameters to UNO objects,
which in turn calls on those objects. Callbacks can also originate from the automation bridge, for
example, when]Script Array objects are used. Then, the bridge modifies the Array object by its
IDispatchEx interface. To get the interface, the bridge has to call QueryInterface with a call back
to the client.

To avoid these callbacks, VvBArray objects and value Objects could be used.

To set security properties on a client, use the security API within a client program or make use of
dcomcenfg again. The API can be difficult to use. Modifying the registry is the easiest method,
simplified by dcomcnfg. This also adds more flexibility, because administrators can easily change
the settings without editing source code and rebuilding the client. However, dcomcnfg only works
with COM servers and not with ordinary executables. To use dcomcnfg, put the client code into a
server that can be registered on the client machine. This not only works with exe servers, but also
with in-process servers, namely dlls. Those can have an AppID entry when they are remote, that is,
they have the D11surrogate subkey set. To activate them an additional executable which instanti-
ates the in-process server is required. At the first call on an interface of the server DCOM initializes
security by using the values from the registry, but it only works if the executable has not called
CoInitializeSecurity beforehand.

To run JScript or VBScript programs, an additional program, a script controller that runs the script
is required, for example, the Windows Scripting Host (WSH). The problem with these controllers is
that they might impose their own security settings by calling CoInitializeSecurity on their own
behalf. In that case, the security settings that were previously set for the controller in the registry
are not being used. Also, the controller does not have to be configurable by dcomenfg, because it
might not be a COM server. This is the case with WSH (not WSH remote).

To overcome these restrictions write a script controller that applies the security settings before a
scripting engine has been created. This is time consuming and requires some knowledge about the
engine, along with good programming skills. The Windows Script Components (WSC) is easier to
use. A WSC is made of a file that contains XML, and existing JScript and VBS scripts can be put

194 OpenOffice.org 2.3 Developer's Guide ¢ June 2007

into the respective XML Element. A wizard generates it for you. The WSC must be registered,
which can be done with regsvr32.exe or directly through the context menu in the file explorer. To
have an AppID entry, declare the component as remotely accessible. This is done by inserting the
remotable attribute into the registration element in the wsc file:

<registration
description="writerdemo script component"
progid="dcomtest.writerdemo.WSC”
version="1.00"
classid="{90c5cala-5e38-4c6d-9634-b0c740c569%ad}"
remotable="true">

When the WSC is registered, there will be an appropriate AppID key in the registry. Use dcomenfg
to apply the desired security settings on this component. To run the script. An executable is
required. For example:

Option Explicit

Sub main ()
Dim obj As Object
Set obj = CreateObject ("dcomtest.writerdemo.wsc”)
obj.run

End Sub

In this example, the script code is contained in the run function. This is how the wsc file appears:

<?xml version="1.0"?2>
<component>
<?component error="true" debug="true"?>
<registration
description="writerdemo script component"
progid="dcomtest.writerdemo.WSC”
version="1.00"
classid="{90c5cala-5e38-4c6d-9634-b0c740c569%ad}"
remotable="true">
</registration>
<public>
<method name="run">
</method>
</public>
<script language="JScript">
<! [CDATA[
var description = new jscripttest;
function jscripttest()
{
this.run = run;
}
function run ()
{
var objServiceManager= new ActiveXObject ("com.sun.star.ServiceManager”,"\\j1-1036") ;
var objCoreReflection= objServiceManager.createInstance ("com.sun.star.reflection.CoreReflection") ;
var objDesktop= objServiceManager.createlInstance ("com.sun.star.frame.Desktop") ;
var objCoreReflection= objServiceManager.createInstance ("com.sun.star.reflection.CoreReflection") ;
var args= new Array();
var objDocument= objDesktop.loadComponentFromURL ("private:factory/swriter", " blank", 0, args);
var objText= objDocument.getText () ;
var objCursor= objText.createTextCursor () ;
objText.insertString(objCursor, "The first line in the newly created text document.\n", false);
objText.insertString(objCursor, "Now we're in the second line", false);
var objTable= objDocument.createInstance("com.sun.star.text.TextTable");objTable.initialize(4, 4);
objText.insertTextContent (objCursor, objTable, false);
var objRows= objTable.getRows () ;
var objRow= objRows.getByIndex(0);
objTable.setPropertyValue ("BackTransparent", false);
objTable.setPropertyValue ("BackColor", 13421823);
objRow.setPropertyValue ("BackTransparent", false);
objRow.setPropertyValue ("BackColor", 6710932);
insertIntoCell("Al","FirstColumn", objTable);
insertIntoCell("B1","SecondColumn", objTable) ;
insertIntoCell("C1","ThirdColumn", objTable) ;
insertIntoCell("D1","SUM", objTable);
objTable.getCellByName ("A2") .setValue
objTable.getCellByName ("B
objTable.getCellByName ("
objTable.getCellByName (" .setFormula ("sum <A2:C2>");objTable.getCellByName ("A3") .setValue(21.5);
objTable.getCellByName (" .setValue(615.3);

) 22.5) 3

)

)

)

)
objTable.getCellByName ("C3") .setValue(-315.7);

)

)

)

)

(
B2") .setValue(5615.3);
2") .setValue(-2315.7);
2"
3"
3

objTable.getCellByName ("D3") .setFormula("sum <A3:C3>") ;objTable.getCellByName ("A4") .setValue(121.5);
objTable.getCellByName ("B4") .setValue(-615.3);

objTable.getCellByName ("C4") .setValue (415.7);

objTable.getCellByName ("D4") .setFormula("sum <A4:C4>");

objCursor.setPropertyValue ("CharColor", 255);

objCursor.setPropertyValue ("CharShadowed", true);

objText.insertControlCharacter(objCursor, 0 , false);

195

196

objText.insertString(objCursor, " This is a colored Text - blue with shadow\n",
false) jobjText.insertControlCharacter (objCursor, 0, false);
var objTextFrame= objDocument.createlInstance ("com.sun.star.text.TextFrame”) ;
var objSize= createStruct ("com.sun.star.awt.Size");
objSize.Width= 15000;
objSize.Height= 400;
objTextFrame.setSize(objSize);
objTextFrame.setPropertyValue ("AnchorType", 1);
objText.insertTextContent (objCursor, objTextFrame, false);
var objFrameText= objTextFrame.getText () ;
var objFrameTextCursor= objFrameText.createTextCursor () ;
objFrameText.insertString(objFrameTextCursor, "The first line in the newly created text frame.",
false);
objFrameText.insertString (objFrameTextCursor,
"With this second line the height of the frame raises.", false);
objFrameText.insertControlCharacter(objCursor, 0 , false);
objCursor.setPropertyValue ("CharColor", 65536);
objCursor.setPropertyValue ("CharShadowed", false);
objText.insertString(objCursor, " That's all for now !!", false);

function insertIntoCell(strCellName, strText, objTable)

{
var objCellText= objTable.getCellByName (strCellName) ;
var objCellCursor= objCellText.createTextCursor();
objCellCursor.setPropertyValue ("CharColoxr",16777215) ;
objCellText.insertString(objCellCursor, strText, false);

}

function createStruct(strTypeName)
{
var classSize= objCoreReflection.forName (strTypeName) ;
var aStruct= new Array();
classSize.createObject (aStruct) ;
return aStruct[0];

11>
</script>
</component>

This WSC contains the WriterDemo example written in JScript.

The Bridge Services

Service: com.sun.star.bridge.oleautomation.BridgeSupplier

Prior to OpenOffice.org2.0 the service was named com.sun.star.bridge.OleBridgeSupplier2.

The component implements the com. sun.star.bridge.XBridgeSupplier2 interface and converts
Automation values to UNO values. The mapping of types occurs according to the mappings
defined in 3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge - Type Mappings.

Usually you do not use this service unless you must convert a type manually.

A programmer uses the com.sun.star.ServiceManager ActiveX component to access the office.
The COM class factory for com. sun.star.ServiceManager uses BridgeSupplier internally to
convert the UNO service manager into an Automation object. Another use case for the BridgeSup-
plier might be to use the SDK without an office installation. For example, if there is a UNO compo-
nent from COM, write code which converts the UNO component without the need of an office.
That code could be placed into an ActiveX object that offers a function, such as

getUNOComponent ().

The interface is declared as follows:

module com { module sun { module star { module bridge {

interface XBridgeSupplier2: com::sun::star::uno::XInterface

{

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridgeSupplier2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridgeSupplier2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridgeSupplier2.html

any createBridge([in] any aModelDepObject,
[in] sequence< byte > aProcessId,
[in] short nSourceModelType,
[in] short nDestModelType
raises(com::sun::star::lang::IllegalArgumentException) ;

[I

The value that is to be converted and the converted value itself are contained in anys. The any is
similar to the VARIANT type in that it can contain all possible types of its type system, but that type
system only comprises UNO types and not Automation types. However, it is necessary that the
function is able to receive as well as to return Automation values. In C++, void pointers could have
been used, but pointers are not used with UNO IDL. Therefore, the any can contain a pointer to a
VARIANT and that the type should be an unsigned long.

To provide the any, write this C++ code:

Any automObject;
// pVariant is a VARIANT* and contains the value that is going to be converted
automObject.setValue ((void*) &pVariant, cppu::UnoType< sal ulnt32 >::get());

Whether the argument aMode1DepObject or the return value carries a VARIANT depends on the
mode in which the function is used. The mode is determined by supplying constant values as the
nSourceModelType and nDestModelType arguments. Those constant are defined as follows:

module com { module sun { module star { module bridge ({

constants ModelDependent

{
const short UNO 1;
const short OLE 25
const short JAVA = 3;
const short CORBA = 4;

The table shows the two possible modes:

nSourceModelType nDestModelType aModelDepObject | Return Value
UNO OLE contains UNO value contains VARIANT*
OLE UNO contains VARTANT* contains UNO value

When the function returns a VARIANT*, that is, a UNO value is converted to an Automation value,
then the caller has to free the memory of the VARIANT:

sal _ulInt8 arId[16];
rtl getGlobalProcessId(arId);
Sequence<sal Int8> procId((sal Int8%*)arId, 16);
Any anyDisp= xSupplier->createBridge (anySource, procId, UNO, OLE);
IDispatch* pDisp;
if (anyDisp.getValueTypeClass () == TypeClass_UNSIGNED_LONG)
{
VARIANT* pvar= * (VARIANT**)anyDisp.getValue() ;
if (pvar->vt == VT DISPATCH)
{
pDisp= pvar->pdispVal;
pDisp->AddRef () ;
}
VariantClear (pvar);
CoTaskMemFree (pvar) ;

)
The function also takes a process ID as an argument. The implementation compares the ID with the

ID of the process the component is running in. Only if the IDs are identical a conversion is
performed. Consider the following scenario:

There are two processes. One process, the server process, runs the BridgeSupplier service.
The second, the client process, has obtained the xBridgeSupplier2 interface by means of the
UNO remote bridge. In the client process an Automation object is to be converted and the func-
tion XBridgeSupplier2::createBridge is called. The interface is actually a UNO interface
proxy and the remote bridge will ensure that the arguments are marshaled, sent to the server

197

198

process and that the original interface is being called. The argument aMode 1DepObject contains
an IDispatch* and must be marshaled as COM interface, but the remote bridge only sees an
any that contains an unsigned long and marshals it accordingly. When it arrives in the server
process, the IDispatch* has become invalid and calls on it might crash the application.

Service: com.sun.star.bridge.OleBridgeSupplierVarl
This service has been deprecated as of OpenOffice.org2.0.

Service: com.sun.star.bridge.oleautomation. ApplicationRegistration

Prior to OpenOffice.org?2.0 this service was named com.sun.star.bridge.OleApplicationRegistration.

This service registers a COM class factory when the service is being instantiated and deregisters it
when the service is being destroyed. The class factory creates a service manager as an Automation
object. All UNO objects created by the service manager are then automatically converted into
Automation objects.

Service: com.sun.star.bridge.oleautomation.Factory

Prior to OpenOffice.org?2.0 this service was named com.sun.star.bridge.OleObjectFactory.

This service creates ActiveX components and makes them available as UNO objects which imple-
ment XInvocation. For the purpose of component instantiation, the OleClient implements the
com.sun.star.lang.XMultiServiceFactory interface. The COM component is specified by its
programmatic identifier (Progld).

Although any ActiveX component with a Progld can be created, a component can only be used if it
supports IDispatch and provides type information through IDispatch::GetTypeInfo.

Unsupported COM Features

The Automation objects provided by the bridge do not provide type information. That is, I1Dis-
patch::GetTypeInfoCount and IDispatch::GetTypelInfo return E NOTIMPL. Also, there are no
COM type libraries available and the objects do not implement the IProvideClassInfo[2] inter-
face.

GetIDsOfName processes only one name at a time. If an array of names is passed, then a DISPIDis
returned for the first name.

IDispatch: : Invoke does not support named arguments and the pExceplnfo and puArgErr param-
eter.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html

3.4.5 CLI Language Binding

About the Language Binding

The CLI (Common Language Infrastructure) language binding allows CLI programs to connect to
an office and perform operations on it, such as creating and converting documents. A CLI-
program consists of IL (Intermediate Language) code and can be produced by tools, such as C# or
VB .NET compilers. The binding provides for type-safe programming. All UNO types are available
as CLI types.

CLI - components are not fully supported. That is, although one can implement UNO interfaces in
a CLI language there is no support for creating instances by means of the office’s service manager.
More accurately, one cannot register the components with unopkg and load them later from
within the running program.

Currently the language binding is only available for the Windows operating system.

Terms

The following CLI-related abbreviations are used within this document:
» IL = Intermediate Language

s CLI=Common Language Infrastructure

= CLR = Common Language Runtime

s CTS = Common Type System

Requirements

The language binding is part of OpenOffice.org 2.0 and is only available for Windows platforms,
such as Windows XP and Windows 2000. Refer to the documentation of the Microsoft .NET Frame-
work to find out which operating systems are supported and which prerequisites have to be
fulfilled. A Microsoft NET Framework Version 1.1 must be installed.

Supported Languages

The language binding should generally enable all CLI languages to be used with UNO. However,
not every language may be suitable, because of missing features. For example, since UNO uses out
parameters, the CLI language must support it as well, which is not given in JScript .NET.

The language binding was successfully tested with C# and VB code. We found that the C++
compiler provides false IL code in conjunction with arrays of enumeration values. This can cause
exceptions, as the following example shows:

__value enum Colors {Red, Green, Blue};
public gc class Test
{

public:
static void foo ()
{
Colors ar[] = new Colors[1l];
ar[0] = Red;
Object* o = ar->GetValue (0);
}

199

200

/...
}

When calling ar->Getvalue (0), then a System.ExecutionEngineException is thrown. Looking
at the IL reveals two significant differences to code produced by a C# compiler. First, the array ar
is constructed as array of System.Enum and not as Colors. Therefore ar->GetType () would return
a type for System.Enum instead of Colors. Second, ar->Getvalue () iscompiledtoa call
instruction instead of callvirt .The example caused the same exception even when compiled
with a compiler from the framework SDK version 1.1.

As a workaround you can provide arrays of System.Int32 for pure in parameter. There is no
workaround for in/out and out parameter. Return values are not affected by this bug.

Another problem is that C++ does not support jagged arrays. Although it is possible to create an
array of System.Array it is no substitute for a jagged array, since they have different types. There-
fore, the compiler will produce an error if you try to pass an Array instance rather then a jagged
array.

The Language Binding DLLs

The language binding comprises five libraries. Some of these do not need to be dealt with by the
programmer, but others must be used during the development or deployment process. All libraries
compiled for the CLI are prefixed by cli_ to separate them from ordinary native libraries:

cli_uno.dll: This is the CLI-UNO bridge that realizes the interaction between managed code
(CLI) and UNO. It does not provide public types.

cli_cppuhelper.dll: Provides bootstrapping code to bootstrap native UNO, that is, to use various
UNO services implemented in different languages. Types from this assembly are always used
in client programs.

cli_ure.dll: Contains helper classes which are useful for implementing UNO interfaces. Types
from this assembly are not necessarily used.

cli_types.dll: Provides classes and interfaces for components and client programs. It is a collec-
tion of all UNO interfaces currently used in the office. Types from this assembly are always
used in client programs.

cli_basetypes.dll: As the name implies, it provides some base types, which are already needed
for the generated UNO types in cli_types.dll. Since it contains the Any type, probably all
programs need this library. Also the cli_types.dll depends on it.

These libraries are part of OpenOffice.org 2.0. Except for cli_uno.dll, they are installed in the
Global Assembly Cache (GAC).

Type Mapping

General

The CLI language binding is intended to run programs that connect to an office and that are
written in a CLI compliant language. Therefore, all UNO Types have to be mapped to a CLI type.
However, it is not necessary to have mappings for all CLI types unless you intend to interact with
arbitrary CLI programs (not UNO components) from UNO (binary UNO). Since we focus on inter-
action with UNO components, we will restrict the mapping to UNO types. Other mappings might
be introduced at a later stage (for example, System.Decimal, indexers, and so on.).

This document only covers the complete mapping of UNO types to CLL

OpenOffice.org 2.3 Developer's Guide « June 2007

UNO types will be mapped to types from the Common Type System (CTS). Although some types
are not CLS compliant (for example, unsigned types are used), they should be usable from various
CLI programming languages.This document will represent CTS types by the respective class from
the framework class library, where possible. NET languages may provide particular build-in
types, which can be used instead of those classes. For example, in C# you can use int rather than
System.Int32.

Since this type mapping specification targets the CLI as a whole, mappings can be given as IL
assembler code. However, for easier understanding, mappings are mostly described by C# exam-
ples.

Metadata is provided in IL assembler syntax.

This document refers to the subject of how UNO types are defined in a certain language. This
subject is to be regarded as hypothetical, since current implementations of the UNO runtime do
not allow for new types to be introduced by language bindings. For example, a component written
in C# or Java may contain new types which should be used across the UNO system. Currently,
new types have to be provided as binary output of the idlc compiler, which have to be made
known to UNO, for example by merging them into a central types.rdb. In a remote scenario, those
type binaries must be present in all participating processes.

Type Name Decoration

IDL type names can potentially conflict with type names of a particular language, or a name from
one language could also be used in another language. In these cases, interactions between those
language environments are prone to errors, because types are misinterpreted and incorrectly
handled. To counter the problem, the bridge decorates all imported and exported type names. For
example, the type a.b.c is transferred from one environment into a .NET environment. Then the
bridge prefixes the name with a string, so that the name is unoidl.a.b.c When that type is sent
back into the environment where it came from, then the bridge removes the "unoidl." prefix. Like-
wise, if a type that was defined in the CLI environment is transferred out of that environment, the
name is prefixed with "c1i." On return, the prefix will be removed again. For more information,
see the concept paper Names in UNO. It can be found at:

http:/ /udk.openoffice.org/common/man/names.html .

When CLI types are declared, their names must not start with "unoidl." And types declared in
UNOIDL must not start with "c1i."

Type Mappings

Simple Types
Simple types are mapped according to the following table.

UNOIDL Type CLI Framework class (namespace System)
boolean Boolean

byte Byte

short Int16

long Int32

201

http://udk.openoffice.org/common/man/names.html
http://udk.openoffice.org/common/man/names.html
http://udk.openoffice.org/common/man/names.html

202

UNOIDL Type CLI Framework class (namespace System)

hyper Int64
unsigned short Ulntl6
unsigned long Ulnt32
unsigned hyper Ulnt64
float Single
double Double
char Char
string String
type Type
void (*) Void (**)

* In type declarations void is only used as a return type.
** Similar to UNOs com.sun.star.uno.TypeClass there is a System. TypeCode enumeration
which, however, does not contain a value for void.

any

the any type will be mapped to a value type with the name uno.Any. For example:

//UNOIDL
void func([in]any val);

//c

virtual void func (uno.Any val);

Although a System.Object can represent all types, it was decided to not use it, for the following
reasons:

First, in UNO only, an interface can have no value, which amounts to a null reference in C# or a
null pointer in C++. The any can represent all uno types and additionally knows a void state (
com::sun::star::uno::TypeClass VOID). If the any is mapped to System.Object then a CLI
null reference would represent both an interface with a null value and a void any. This distinction
is important.

Second, the any can contain a particular interface. The consumer of the any knows exactly what
type the any contains because of the provided type information, and is spared to determine the
type by using casts.

The function hasvalue determines if the type class is of TypeClass vOID, in other words, if the
any carries a value. The Any class also overrides the methods, Equals, ToString and GetHashCode
from System.Object. Thers is also an Equals implementation which takes an Any as argument.
Hence the argument does not require unboxing as the overridden Equals method does. The any
offers a bunch of constructors. For complete initialization it needs a System.Type and a
System.Object:

public Any(System.Type type, System.Object)
Because the type of an object can be identified by object.GetType, it is in some cases unnecessary

to specify the type. Therefore there are also a couple of constructors, which only take the object as
argument. For example:

public Any(char value)
public Any (bool value)

OpenOffice.org 2.3 Developer's Guide « June 2007

However, when an UNO interface or struct is to be put in an Any then the type must be explicitly
provided, because structs can be derived and interface implementations can derive from multiple
interfaces. Then Object.GetType may then not return the intended type.

At this point the polymorphic structs needs to be mentioned in particular, because they currently
require to provide a uno.PolymorphicType in the Any constructor:

//C#

PolymorphicType t = PolymorphicType.GetType (
typeof (unoidl.com.sun.star.beans.Optional),
“unoidl.com.sun.star.beans.Optional<System.Char>") ;
Any a = new Any(t, objStruct);

The Any contains a static member VOID which can be used whenever a void Any is needed:
//ck

obj.functionWithVoidAnyArgument (uno.Any.VOID) ;

The type and value contained in the Any can be accessed by read-only properties named Type and
value. One can also subsequently assign new values by calling setValue. This can be useful, when
handling arrays. For example:

//C#

uno.Any[] ar = new uno.Any([1000];

foreach (uno.Any a in ar)
a.setValue (typeof (char), 's');

One could also construct new Any instances and assign them:

foreach (uno.Any a in ar)

a = new uno.Any('c');
setValue and the read access to the Type property may change the state of the instance. Therefore
one has to make sure that concurrent access is synchronized. When an 2ny is default constructed,
for example when creating an array of Anys, then the member representing the Any's type is null.
Only when the Type property is accessed and setvalue has not been called yet, then the type is set
to void. This setting of the member may interfere with setvalue, hence the need for synchroniza-
tion. However, in most cases synchronization is not necessary.

The uno . Any is contained in the cli_basetypes.dll and the C# source file can be found in the cli_ure
project (cli_ure/source/basetypes/uno/Any.cs).

interface
General

UNOIDL interface types map to CTS interface types with public accessibility. If a UNO interface
inherits an interface, then the target interface will do as well.

Methods
General

All methods have public accessibility. The method names and argument names of the target type
are the same as the respective names in the UNOIDL declaration. The return type and argument
types correspond to the mapping of the respective UNOIDL types. The order of the arguments is
the same as in the UNOIDL declaration.

203

Types declared in a CLI language, do not need to provide argument names in methods. Only their
types are required. If names are provided, then this is done for all arguments.

Exceptions, which are expressed by the raised keyword in UNOIDL, have no bearing on the target
type. The IL assembler method head does not reflect the exception. However, metadata, which

holds information about possible UNO exceptions, is available.

Parameter Types (in,out,in/out)

The CLI supports three kinds of parameter types: by-ref parameters, by-value parameters and
typed-reference parameters. Typed-reference parameters are very special types and are of no rele-
vance to this specification (for more information, see class System. TypedReference). Within the
CLR, objects are always passed as references. However, only objects that have a by-ref type, which
is indicated by the trailing ‘&’ in the type name, can be assigned a new value. Therefore, by-ref

parameters can be used as in/out or just out parameters.

Parameters can have an in-attribute, out-attribute (CLI: InAttribute, OutAttribute) or both. They

are generated in different ways:

= By using language-specific key words, such as out in C#, which produces an OutAttribute

= By using attribute classes, such as System.Runtime.InteropServices.InAttribute and

System.Runtime.InteropServices.OutAttribute

= By explicitly defining parameters during dynamic code creation with the
System.Reflection.Emit framework (see method system.Reflection.Emit.Method-

Builder.DefineParameter)

Parameter types are mapped as follows:

UNOIDL keyword CIL parameter passing conven- | CIL Custom Attributes
tion

[in] by-value InAttribute

[out] by-ref OutAttribute

[inout] by-ref InAttribute, OutAttribute

In metadata a "by-value" type is represented by a CLI build-in type or class name. A "by-ref" type
additionally has an ‘&’ appended. The InAttribute is represented by "[in]" and the OutAttribute by
" [out]". If both attributes are applied, then a combination of both markers appears in the metadata.

For example:

.method public hidebysig newslot virtual abstract
instance intl6 funcl([in] intl6é 'value') cil managed
{

}

.method public hidebysig newslot virtual abstract
instance intl6 func2([out] intl6& 'value') cil managed
{

}

.method public hidebysig newslot virtual abstract

instance intl6 func3([out] [in] intlé& 'value') cil managed
{

}

It depends on the language, what ways of parameter passings are supported. The language may
also require a special syntax with dedicated keywords to mark a parameter to use a particular
parameter passing convention. Therefore a general example cannot be provided. However, here

are examples in C# and C++:

204 OpenOffice.org 2.3 Developer's Guide June 2007

//UNOIDL

void fool ([in] short value);
void foo2 ([out] short value);
void foo3([inout] short value);

// C#

void fool(short wvalue);
void foo2(out short value);
void foo3(ref short value);

// C++ .NET

void foo(short value);

void foo2(short *value);

void foo3(short *value);

When one uses UNO types in a language that does not support the different parameter passings,
then that language might not be suitable for programming UNO code. For example, JScript .NET

does not support out parameters. Therefore it is inappropriate for most UNO applications.

A word about in-parameters. An UNOIDL in-parameter may not be changed from within the
method. This could be expressed in C++ with a const modifier. For example:

//C++ .NET

void foo (const Foo& value);

The const modifier, however, is not supported by the CLI and has only a meaning in code written
with the same language. For example, the C++ compiler creates an attribute, that will be evaluated
by the same compiler but it is not guaranteed that other compilers make use of this attribute. For
example:

//C++ .NET
void func(const Foo* a);

// IL asm

.method public hidebysig newslot virtual abstract instance void func(class Foo

modopt ([Microsoft.VisualC]Microsoft.VisualC.IsConstModifier) a) cil managed

Since the C# compiler does not evaluate the IsConstModifier attribute, the argument could be
modified in a C# implementation of that function.

A compiler could evaluate the InAttribute and prevent that the argument is changed. Since that is
not required, in-parameters could be modified dependent on the language being used. Therefore,
every developer must follow the rule:

UNOIDL in-parameter may not be modified from within a method, even if allowed by the language.

Exceptions

CLI methods are not particularly marked if they throw exceptions. In ordner to not loose the infor-
mation what exceptions can be thrown by a UNO interface method a custom attribute may be
applied to that method. All exceptions which are indicated by the keyword raises in a UNOIDL
interface description are mapped to a custom attribute, named uno.ExceptionAttribute.. One
only need to use this attribute when one declares a new type in a CLI language. Otherwise it is
only for informational purposes. The climaker tool from the cli language binding provides assem-
blies in which methods which throw exceptions (other than com. sun.star.uno.RuntimeExcep-
tion) are tagged with this Attribute. If the attribute is not present a method can still throw a
RuntimeException or any other exception which is derives from it..

One-Way Methods

The UNOIDL oneway attribute has no counterpart in the CLI To retain this information, the
custom attribute uno.OnewayAttribute is applied.

205

206

Attributes

The UNOIDL attribute type is mapped to a CTS property. The type of the property is the mapping
of the type used in the attribute declaration in UNOIDL.

A UNOIDL readonly attribute is mapped to a read-only property. That is, the property only has a
get method.

UNOIDL method attributes can throw exceptions. These are expressed by the custom attribute
uno.ExceptionAttribute which shall be applied to the get and/or set method. It shall only be
applied if an exception is specified in UNOIDL.

Xlnterface

The CLI language binding does not support com.sun.star.uno.XInterface. Wherever a XInterface
occurs in a UNOIDL method signature, the method in the mapping contains a System.Object.

XlInterface is used to control the lifetime of UNO objects. Since the CLR uses a garbage collection
mechanism, similar to Java and Smalltalk, there is no need for an explicit control of an object’s life-
time.

XInterface also provides a means to obtain other implemented interfaces by calling queryInterface.
In CLI, code this is done by casting an object to the desired interface. If the object does not imple-
ment this interface, then a System.InvalidCastException is thrown.

For the previously stated reasons, the XInterface adds no functionality to an implementation.
Therefore, no mapping for this interface exists.

struct

A UNO IDL struct is mapped to CTS class type, which supports inheritance (that is, no sealed attri-
bute in the class head). A struct, such as defined by the C# struct keyword, is a value type and
therefore has no inheritance support. For example:

//C#

public struct Foo
{

}

IL class header:

.class public sequential ansi sealed beforefieldinit Foo

extends [mscorlib]System.ValueType

{

}

Also, the class inherits system.Object if the UNO struct has no base struct. Otherwise the target
class inherits the class that is the mapping of the respective UNO base struct. Members of a
UNOIDL struct are mapped to their respective target types. All members of the target type have
public accessibility.

For ease of use, the target has two constructors: one default constructor without arguments and
one that completely initializes the struct. The order of the arguments to the second constructor
corresponds to the position of the members in the respective UNOIDL description. That is, the first
argument initializes the member that is the mapping of the first member of the UNOIDL descrip-
tion. The names of the arguments are the same as the members that they initialize. Both construc-
tors initialize their base class appropriately by calling a constructor of the base class. In some

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

languages, instance constructor initializers are implicitly provided. For example, in C# base() does
not need to be called in the initializer.

If a struct inherits another struct, the order of the arguments in a constructor is as follows: the
arguments for the struct at the root come first, followed by the arguments for the deriving struct,
and so on. The order of the arguments that initialize members of the same struct depends again on
the position of the respective members within the UNOIDL declaration. The argument for the first
member appears first, followed by the argument for the second member, and so on. The
constructor calls the constructor of the inherited class and passes the respective arguments.

//UNOIDL
struct FooBase
{

string s;

}i

struct Foo: FooBase
{

long 1;

}i

// C#

public class FooBase

{

public FooBase() // base() implicitly called
{

}

public FooBase (string s) // base() implicitly
{
this.s = s;

}

public string s;

}

public class Foo: FooBase
{

public Foo ()

{

}

public Foo(string s, int 1): base(s)
{

this.l = 1;

}

public int 1;
}

Polymorphic structs

As of OpenOffice.org?2.0, there is a new UNO IDL feature, the polymorphic struct. This struct is
similar to C++ templates, in that the struct is parameterized and members can use the parameters
as types. For example:

//UNO IDL
struct PolyStruct<T>
{

T member;

}i

//C#

public class PolyStruct

{
public PolyStruct() // base() implicitly called
{
}

public PolyStruct (object theMember)
{
member = theMember;

}

public object member;

207

208

As one can see, the type that is provided by the parameter is a System.Object. When instantiating a
polymorphic struct, one need not initialize the members that are Objects. They can be null.

const

If a UNOIDL const value is contained in a module rather then a constants group, then a class is
generated with the name of the const value. The only member is the constant. For example:

// UNO IDL

module com { sun { star { foo {
const long bar = 111;

Yioliodso)i

// C# representation of the mapping
namespace unoidl.com.sun.star.foo

{

public class bar

{

public const int bar = 111;

}

}

In contrast to the Java mapping, interfaces are not used, because interfaces with fields are not CLS
compliant.

constants

A constants type is mapped to a class with the same name as the constants group. The namespace
of the class reflects the UNOIDL module containing the constants type. For example:

//UNOIDL

module com { sun { star { foo ({
constants bar
{

const long a
const long b
}i

}i

// C# representation

namespace unoidl.com.sun.star.foo
{

public class bar

{

public const long a
public const long b
}

}

1;
2;

-

enum

UNOIDL enumeration types map to a CTS enumeration. The target type must inherit
System.Enum and have the attribute sealed. For example:

//UNOIDL
enum Color
{

green,

re

}i

//C#

public enum Color
{

green,

red

}

sequerice

A UNOIDL sequence maps to a CTS array. The target type may only contain CLS types, which is
always the case since this mapping specification only uses CLS types. The target array has exactly
one dimension. Therefore a sequence that contains a sequence is mapped to an array that contains
arrays. Those arrays are also called "jagged arrays". For example:

OpenOffice.org 2.3 Developer's Guide « June 2007

//UNOIDL
sequence<long> ar32;
sequence<sequence<long>> arar32;

//C#
int ar32;
int[] [] arar32;

exception

The com.sun.star.uno.Exception is mapped to an exception that uses the same namespace and
name. All members have public accessibility. The target unoidl.com.sun.star.uno.Exception
inherits System.Exception and has one member only, which represents the Context member of
the UNOIDL Exception. The target type does not have a member that represents the Message
member of the UNOIDL type. Instead, it uses the Message property of System.Object.

For ease of use the target has two constructors: one default constructor without arguments and one
that completely initializes the exception. The order of the arguments to the second constructor
corresponds to the position of the members in the respective UNOIDL description. That is, the first
argument initializes the member, which is the mapping of the first member of the UNOIDL
description. The names of the arguments are the same as the members, which they initialize. Both
constructors initialize their base class appropriately by calling a constructor of the base class. For
example:

//UNOIDL

module com { sun { star { uno {
exception Exception

{

string Message;

com: :sun: :star::uno: :XInterface Context;
bi

Yiobi b}

//C#
namespace unoidl.com.sun.star.uno

{

public class Exception: System.Exception
{

public System.Object Context;

public Exception(): base()

{

}

public Exception(string Message, System.Object Context): base (Message)
{

this.Context = Context;

}

}

}

All UNO exceptions inherit com.sun.star.uno.Exception. Likewise their mappings also inherit from
the unoidl.com.sun.star.uno.Exception. The order of the constructor’s arguments then
depends on the inheritance chain. The arguments for the initialization of
unoidl.com.sun.star.uno.Exception come first followed by the arguments for the derived
exception and so on. The order of the arguments, which initialize the members of the same excep-
tion, depends again from the position of the respective members within the UNOIDL declaration.
The argument for the first member appears first, followed by the argument for the second member,
and so on. The constructor calls the constructor of the inherited class and passes the respective
arguments. For example, let us assume we have a exception FooException which has two
members:

//UNOIDL
module com { sun { star { uno {
exception FooException: com::sun::star::uno::Exception
{
int valuel;
string value2;

209

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html

210

//C#
namespace com.sun.star.uno
{
public class FooException: com.sun.star.uno.Exception
{
public int valuel;
public string value2;

public FooException(): base()

{

}

public FooException(string argMessage,
System.Object Context, int valuel,
string value2): base (Message, Context)

{
this.valuel
this.value2

}

valuel;
value2;

}
}

services

For every single-interface-based service a CLI class is provided which enables typesafe instantia-
tion of the service. For example, if there were a service com.sun.star.Test then it could be created in
these two way
//ck
// com.sun.star.Test implements interface XTest
com.sun.star.uno.XComponentContext xContext = ...;
object service=

xContext.getServiceManager () .createInstanceWithContext (

"com.sun.star.Test", xContext);

XTest x = (XTest) service;
// This is the new way
XTest y = com.sun.star.Test.create (xContext) ;
If a service constructor method is specified to throw exceptions, then the respective CLI method
hat the custom attribute uno.ExceptionAttribute applied to it.

See chapter Services/Service Constructors under 3.2.1 Professional UNO - API Concepts - Data
Types for further details.

singletons

Similar to the services there are CLI classes for new-style singletons. For example, if there were a
singleton com.sun.star.TestSingleton then it could be created in these two ways:

//CH

com.sun.star.uno.XComponentContext xContext = ...;

uno.Any a = xContext.getValueByName (“com.sun.star.TestSingleton”) ;

XTest x = (XTest) a.Value;

//The alternative:
XTest x = com.sun.star.TestSingleton.get (xContext) ;

Additional Structures

Whether a complete type mapping can be achieved depends on the capabilities of a target environ-
ment. UNOIDL attributes which have no counterpart in the CLI are mapped to custom attributes.
Hence no information becomes lost in the mapping. The attributes can be evaluated by:

» The CLI - UNO bridge

= Tools that generated source code files or documentation

OpenOffice.org 2.3 Developer's Guide « June 2007

= Tools that use CLI assemblies to dynamically provide type information to UNO.

ExceptionAttribute Attribute

The uno.ExceptionAttribute can be applied to interface methods, property methods (get or set) or
service constructor methods. It contains the information about what exceptions can be thrown by
the method. The source code can be found at
cli_ure/source/basetypes/uno/ExceptionAttribute.cs.

OnewayAttribute

The uno.oOnewayAttribute is applied to those interface methods that UNOIDL declarations have
tapplied he oneway attribute to. The source code can be found at
cli_ure/source/basetypes/uno/OnewayAttribute.cs.

BoundPropertyAttribute

The uno.BoundPropertyAttribute is applied to properties whose respective UNOIDL declara-
tions have the bount attibute applied to it. The source code can be found at cli_ure/source/base-
types/uno/BoundPropertyAttribute.cs.

TypeParametersAttribute

The uno. TypeParametersAttribute is applied to polymorphic structs. It keeps the information of
the names in the type list of the struct. For example, a struct may be named com. sun.star.Foo<T,
C>. Then the attribute containes the information, that the name of the first type in the type list is

T and the secondis C .

This attribute will become obsolete when the CLI supports templates and the CLI-UNO language
binding has adopted them. The source code can be found at
cli_ure/source/basetypes/uno/TypeParametersAttribute.cs.

ParameterizedTypeAttribute

The uno.ParameterizedTypeAttribute is applied to fields of polymorphic structs whose type is
specified in the type list. For example, the struct may be declared as com.sun.star.Foo<T,C>and
member is of type T . The member of the CLI struct would then be of type System.Object and the
applied ParameterizeTypeAttribute would declare that the actual typeis T .

This attribute will become obsolete when the CLI supports templates and the CLI-UNO language
binding has adopted them. The source code can be found at
cli_ure/source/basetypes/uno/ParameterizedTypeAttribute.cs.

TypeArgumentsAttribute

The uno. TypeArgumentsAttribute is applied to instantiations of the polymorphic struct. That is,
it appears when a polymorphic struct is used as return value, parameter or field. It contains the
information about the actual types in the type list. For example, a function has a parameter of type
com.sun.star.StructFoo<char, long>. Then the CLI parameter has the attribute which contains
the list of types, in this case System.Char and System.Int32.

211

212

This attribute will become obsolete when the CLI supports templates and the CLI-UNO language
binding has adopted them. The source code can be found at cli_ure/source/basetypes/uno/Type-
ArgumentsAttribute.cs.

PolymorphicType

The uno.PolymorphicType is derived from System. Type. It is used whenever a type from a poly-
morphic struct is needed. For example:

//UNOIDL

void funcl
void func2
type func3
any funci (

[in] type t);
[in]any a);

(
(
0
)

If the caller intends to pass the type of an polymorphic struct in funcl, then they cannot use
typeof(structname). Instead a uno.PolymorphicType must be created. The same goes for func2,
when the any contains a polymorphic struct. If a UNO method returns the type of polymorphic

struct, then the bridge ensures that a PolymorphicType is returned rather than system. Type.
The PolymorphicType is constructed by a static function:
public static PolymorphicType GetType (Type type, string name)

The function ensures that there exist only one instance for the given combination of type and name.

This attribute will become obsolete when the CLI supports templates and the CLI-UNO language
binding has adopted them. The source code can be found at cli_ure/source/basetypes/uno/Poly-
morphicType.cs.

Lifetime Management and Obtaining Interfaces

The CLR is similar to the Java runtime in that it keeps track of the object’s lifetime rather then
leaving the task to the developer. Once an object is no longer referenced (unreachable), the CLR
deletes that object. Therefore, reference counting, as used in C++, is not necessary. Hence
com.sun.star.uno.XInterface:acquire and com.sun.star.uno.XInterface:release are not needed.

XInterface has a third method, queryInterface, which is used to query an object for a particular
interface. This language binding does not use querylInterface. Instead objects can be cast to the
desired interface. For example:

// C#
try {
XFoo bar = (XFoo) obj;
} catch (System.InvalidCastException e) {
// obj does not support XFoo
}

// using keywords is and as
if (obj is XFoo) {

// obj supports XFoo
}

XFoo foo = obj as XFoo;
if (foo != null)
{

// obj supports XFoo
}

// C++ with managed extensions
XFoo * pFoo = dynamic cast< XFoo * >(obj);
if (XFoo != 0)
{
// obj supports XFoo
}

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#release
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#release
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#release
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#acquire
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#acquire
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#acquire

try {

XFoo * pFoo = _ try cast< XFoo * >(obj)

} catch (System::InvalidCastException * e) {
// obj does not support XFoo

}

Writing Client Programs

To build a client program it must reference at least c1i types.dll and cli cppuhelper.dll.
Also c1i ure can be referenced when one of its classes is used. These libraries are installed in the
GAC and the program folder of the office installation. The referencing is done by certain compiler
switches, for example /Al for C++ (with managed extensions) or /reference for the C# compiler. C
++ also requires dlls to be specified by the using the #using:

#using <mscorlib.dll>

#using <cli types.dll>
The following example discusses how to use services provided by a running office process:

The starting point of every remote client program is a component context. It is created by a static
function defaultBootstrap InitialComponentContext, which is provided by the class
uno.util.Bootstrap. The context provides the service manager by which UNO components can
be created. However, these components would still be local to the client process, that is, they are
not from a running office and therefore cannot affect the running office. What is actually needed is
a service manager of a running office. To achieve that, the component com.sun.star.bridge.UnoUrl-
Resolver is used, which is provided by the local service manager. The UnoUrlResolver connects to
the remote office and creates a proxy of the office’s service manager in the client process. The
example code is as follows:

//C# example
System.Collections.Hashtable ht = new System.Collections.Hashtable() ;
ht.Add ("SYSBINDIR", "file:///<office-dir>/program');
unoidl.com.sun.star.uno.XComponentContext xLocalContext =
uno.util.Bootstrap.defaultBootstrap_ InitialComponentContext (
"file:///<office-dir>/ progranmfuno.ini", ht.GetEnumerator());

unoidl.com.sun.star.bridge.XUnoUrlResolver xURLResolver =
(unoidl.com.sun.star.bridge.XUnoUrlResolver)
xLocalContext.getServiceManager () .
createInstanceWithContext ("com.sun.star.bridge.UnoUrlResolver",
xLocalContext) ;

unoidl.com.sun.star.uno.XComponentContext xRemoteContext =
(unoidl.com.sun.star.uno.XComponentContext) xURLResolver.resolve (
"uno:socket,host=localhost, port=2002;urp; StarOffice.ComponentContext") ;

unoidl.com.sun.star.lang.XMultiServiceFactory xRemoteFactory =

(unoidl.com.sun.star.lang.XMultiServiceFactory)
xRemoteContext.getServiceManager () ;

With the factory of the running office at hand, all components of the remote office are accesible.

For a client to connect to a running office, the office must have been started with the proper param-
eters. In this case, the command line looks like this:

soffice -accept=socket,host=localhost,port=2002;urp;

More information about interprocess communication can be found in the Developer’s Guide, in
chapter 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections.

The example shows a scenario where an office is controlled remotely. It is, however, possible to
write UNO applications that do not depend on a running office. Then, you would typically
provide an own database of registered services. For more information, see 4.9.5 Writing LINO
Components - Deployment Options for Components - Manual Component Installation.

213

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/UnoUrlResolver.html

There is an overloaded function uno.util.Bootstrap.defaultBootstrap InitialComponentContext,
which does not take arguments. It is intended to always connect to the most recently installed
office. It is even capable of starting the office. To do that, the function needs to know where the
office is located. This information is obtained from the windows registry. During installation either
the key HKEY CURRENT USER\Software\OpenOffice.org\UNO\InstallPath or

HKEY LOCAL MACHINE\Software\OpenOffice.org\UNO\InstallPath is written dependent on
whether the user chooses a user installation or an installation for all users. The function uses the
key in HKEY CURRENT USER first, and if it does not exists it uses the key in HKEY LOCAL MACHINE.
In case the office does not start, check these keys. Also make sure that the PATH environment vari-
able does not contain the program path to a different office. Implementing UNO Interfaces

The CLI-UNO language binding does not support UNO components that are written in a CLI
language. Instead, it acts as a liaison between a CLI client program and an office. The client
program usually obtains UNO objects from the office and performs operations on them. Therefore,
it is rarely necessary to implement UNO interfaces.

To receive notifications from UNO objects, then, it is necessary to implement the proper interfaces.
Also, interfaces can be implemented in order to use the objects as arguments to UNO methods.

Interfaces are implemented by declaring a class that derives from one or more interfaces, and
which provides implementations for the interface methods. How this is done is covered by the
respective documentation of the various CLI languages.

The Querride Problem

The term override problem describes a problem that occurs when a virtual function of a base
object becomes unreachable because an interface method overrides the implementation of the base
class. For example, all CLI objects derive from System.Object. If an interface has a method that
has the same signature as one of System.0Object’s methods, then the respective method of
System.Ob7ject is unreachable if the interface method is virtual.

For example, consider the following declaration of the interface XFoo and its implementing class :
using namespace System;

public _ gc _ interface XFoo
{
public:
virtual String* ToString();
Vi

public _ gc class Foo : public XFoo
{
public:

virtual String * ToString()

{
return NULL;

}
}i

If the method ToString of an instance is called, then the implementation of the interface method is
invoked. For example:

int main (void)

{

Foo * £ = new Foo();

Object * o = f;

f->ToString(); // calls Foo.ToString

o->ToString(); // calls Foo.ToString
return 0;

This may not be intended, because the interface method likely has a different semantic than its
namesake of System.Object.

214 OpenOffice.org 2.3 Developer's Guide June 2007

A solution is to prevent the interface method from overriding the method of System.0bject
without making the interface method non-virtual. The CLI provides a remedy by way of the

newslot flag, which is attached to the method header in the IL code. CLI languages may have
different means for denoting a method with newslot

The following examples show ways of implementing xFoo in different languages, so that
Object.ToString can still be called.

//CH++
//interface methods should be qualified with the interface they belong to
public _ gc class A: public XFoo
{
public:
virtual String* XFoo::ToString(
{
Console: :WriteLine ("A::foo") ;
return NULL;

Although XFoo: : ToString is virtual, it cannot be overridden in an inheriting class, because the CLI
method header contains the final attribute. In an inheriting class one can, however, derive again from XFoo
and provide an implementation.

In C# there are different ways provide an implementation:

// IL contains: newslot final virtual
public new string ToString()

{

}

The keyword new inserts the newslot attribute in the CLI method header. This implementation
cannot be overridden in an inheriting class.

//IL contains: newslot virtual
public new virtual string ToString()
{

}

This method can be overridden in a derived class.

// Using a qualified method name for the implementation. The virtual
//modifier is not allowed

string XFoo.ToString ()

{

return null;

}

This implementation cannot be overridden in a derived class. An instance of the implementing
class must be cast to XFoo before the method can be called.

'VB .NET

Public Shadows Function ToString() As String Implements XFoo.ToString
Console.WriteLine ("Foo.toString")

End Function

This implementation cannot be overridden in a derived class.
Public Overridable Shadows Function ToString() As String _
Implements XFoo.ToString

Console.WriteLine ("Foo.toString"
End Function

This method can be overridden.

215

216

Important Interfaces and Implementations (Helper Classes)

UNO objects implement a set of UNO interfaces, some of which are always dependent on require-
ments. The interfaces below belong to the assembly called c1i_types.d11 within your office’s
program directory:

com.sun.star.lang. XTypeProvider (recommended for all UNO objects)

com.sun.star.uno.XWeak (recommended for all UNO objects)

com.sun.star.Jang. XComponent (optional)

com.sun.star.beans XPropertySet (optional, required for service implementation concerning
defined service properties)

Making object development a little easier, the language binding provides helper implementations
for most of the above interfaces. The helper classes belong to the uno.util namespace, and are
contained in the assembly called c1i_ure.d11. Notice that there is a helper missing that imple-
ments a listener container similar to the one in C++ or Java. The main reason for its existence is to
ensure the automatic notification of event listeners (see com.sun.star.lang. XComponent,
com.sun.star.lang. XEventListener). The CLI languages provide a simple mechanism for events
(delegates) which makes a helper class superfluous in this particular case, because event notifica-
tion is easily implemented using language features.

uno.util. WeakBase

This class implements the XTypeProvider and XWeak interfaces. XWeak is used to implement a
UNO weak reference mechanism, and it may seem strange that System.WeakReference is not
used. You have to remember that your UNO object is held from within other language environ-
ments that do not support weak references. This way, weak references are implemented as a UNO
concept. Of course, the helper implementation uses System.WeakReference, as can every compo-
nent or application, as long as it is not passed into calls to UNO interfaces. Also, the compiler will
not be able to compile the implementation properly.

uno.util. WeakComponentBase

This class derives from uno.util.WeakBase and implements the XComponent interface. Use this
class as base class if the component needs to perform a special cleanup. The class has two protected
member functions that are called upon disposal of the object:

= preDisposing() - called before all registered event listeners are notified

= postDisposing() - called after all registered event listeners are notified. Resource cleanup should
be performed in this method.

Inherit from uno.util.WeakComponentBase and override the appropriate methods.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

Writing UNO Components

OpenOffice.org can be extended by UNO components. UNO components are shared libraries or jar
files with the ability to instantiate objects that can integrate themselves into the UNO environment.
A UNO component can access existing features of OpenOffice.org, and it can be used from within
OpenOffice.org through the object communication mechanisms provided by UNO.

OpenOffice.org provides many entry points for these extensions.

Arbitrary objects written in Java or C++ can be called from the user interface, display their own
GUI, and work with the entire application.

Calc Add-Ins can be used to create new formula sets that are presented in the formula auto-
pilot.

Chart Add-Ins can insert new Chart types into the charting tool.
New database drivers can be installed into the office to extend data access.
Entire application modules are exchangeable, for instance the linguistics module.

It is possible to create new document types and add them to the office. For instance, a personal
information manager could add message, calendar, task and journal document components, or
a project manager could support a new project document.

Developers can leverage the OpenOffice.org XML file format to read and write new file formats
through components.

From OpenOffice.org 1.1.0 there is comprehensive support for component extensions. The entire
product cycle of a component is now covered:

The design and development of components has been made easier by adding wizards for compo-
nents to the NetBeans IDE. You can find more detailed info under
http://wiki.services.openoffice.org/wiki/OpenOffice NetBeans Integration.

Components can integrate themselves into the user interface, using simple configuration files. You
can add new menus, toolbar items, and help items for a component simply by editing XML config-
uration files.

Components are deployed with the Extension Manager. See chapter 5 Extensions.

Last but not least, this is not the only way to add features to the office. Learning how to write
components and how to use the OpenOffice.org API at the same time teaches you the techniques
used in the OpenOffice.org code base, thus enabling you to work with the existing OpenOffice.org
source code, extend it or introduce bug fixes.

Components are the basis for all of these extensions. This chapter teaches you how to write UNO
components. It assumes that you have at least read the chapter 2 First Steps and depending on
your target language the section about the Java or C++ language binding in 3 Professional UNO.

217

http://wiki.services.openoffice.org/wiki/OpenOffice_NetBeans_Integration
http://wiki.services.openoffice.org/wiki/OpenOffice_NetBeans_Integration
http://wiki.services.openoffice.org/wiki/OpenOffice_NetBeans_Integration

218

4.1 Required Files

OpenOffice.org Software Development Kit (SDK)

The SDK provides a build environment for your projects, separate from the OpenOffice.org
build environment. It contains the necessary tools for UNO development, C and C++ libraries,
JARs , UNO type definitions and example code. But most of the necessary libraries and files are
shared with an existing OpenOffice.org installation which is a prerequisite for a SDK.

The SDK development tools (executables) contained in the SDK are used in the following
chapter. Become familiar with the following table that lists the executables from the SDK. These
executables are found in the platform specific bin folder of the SDK installation. In Windows,
they are in the folder <SDK>\windows\bin, on Linux they are stored in <SDK>/linux/bin and on
Solaris in <SDK>/solaris/bin.

Executable Description

idlc The UNOIDL compiler that creates binary type description files with the
extension .urd for registry database files.

idlcpp The idlc preprocessor used by idlc.

cppumaker The C++ UNO maker that generates headers with UNO types mapped from binary
type descriptions to C++ from binary type descriptions.

javamaker Java maker that generates interface and class definitions for UNO types mapped
from binary type descriptions to Java from binary type descriptions.

xml2cmp XML to Component that can extract type names from XML object descriptions for
use with cppumaker and javamaker, creates functions.

regmerge The registry merge that merges binary type descriptions into registry files.

regcomp The register component that tells a registry database file that there is a new compo-
nent and where it can be found.

unopkg The command line tool of the extension manager.

reguiew The registry view that outputs the content of a registry database file in readable
format.

autodoc The automatic documentation tool that evaluates Javadoc style comments in idl files
and generates documentation from them.

rdbmaker The registry database maker that creates registry files with selected types and their
dependencies.

uno The UNO executable. It is a standalone UNO environment which is able to run UNO
components supporting the com. sun.star.lang.XMain interface, one possible
use is:
$ uno -s ServiceName -r MyRegistry.rdb -- MyMainClass argl

GNU Make

The makefiles in the SDK assume that the GNU muake is used. Documentation for GNU make
command line options and syntax are available at www.gnu.org. In Windows, not every GNU
make seems stable, notably some versions of Cygwin make were reported to have problems
with the SDK makefiles. Other GNU make binaries, such as the one from unixutils.sourceforge.net
work well even on the Windows command line. The package UnxUtils comes with a zsh shell
and numerous utilities, such as find, sed. To install UnxUtils, download and unpack the archive,
and add <UnxUtils>\usr\local\wbin to the PATH environment variable. Now launch sh.exe
from <UnxUtils>\bin and issue the command make from within zsh or use the Windows
command line to run make. For further information about zsh, go to zsh.sunsite.dk.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html

4.2 Using UNOIDL to Specify New Components

Component development does not necessarily start with the declaration of new interfaces or new
types. Try to use the interfaces and types already defined in the OpenOffice.org APIL. If existing
interfaces cover your requirements and you need to know how to implement them in your own
component, go to section 4.3 Writing UNO Components - Component Architecture. The following
describes how to declare your own interfaces and other types you might need.

UNO uses its own meta language UNOIDL (UNO Interface Definition Language) to specify types.
Using a meta language for this purpose enables you to generate language specific code, such as
header files and class definitions, to implement objects in any target language supported by UNO.
UNOIDL keeps the foundations of UNO language independent and takes the burden of mechanic
language adaptation from the developer’s shoulders when implementing UNO objects.

To define a new interface, service or other entity, write its specification in UNOIDL, then compile it
with the UNOIDL compiler idlc. After compilation, merge the resulting binary type description
into a type library that is used during the make process to create necessary language dependent
type representations, such as header or Java class files. The chapter 3 Professional UNO provides the
various type mappings used by cppumaker and javamaker in the language binding sections. Refer
to the section 4.9.2 Writing UNO Components - Deployment Options for Components - Background:
UNO Registries - UNO Type Library for details about type information in the registry-based type
library.

When writing your own specifications, please consult the chapter A IDL Design Guide which treats design
principles and conventions used in API specifications. Follow the rules for universality, orthogonality, inher-
itance and uniformity of the API as described in the Design Guide.

4.2.1 Writing the Specification

There are similarities between C++, CORBA IDL and UNOIDL, especially concerning the syntax
and the general usage of the compiler. If you are familiar with reading C++ or CORBA IDL, you
will be able to understand much of UNOIDL, as well.

As a first example, consider the IDL specification for the com.sun.star.bridge.XUnoUrlRe-
solver interface. An idl file usually starts with a number of preprocessor directives, followed by
module instructions and a type definition:

#ifndef _ com sun_star bridge_ XUnoUrlResolver idl
#define _ com sun_star bridge XUnoUrlResolver idl

#include <com/sun/star/uno/XInterface.idl>

#include <com/sun/star/lang/IllegalArgumentException.idl>
#include <com/sun/star/connection/ConnectionSetupException.idl>
#include <com/sun/star/connection/NoConnectException.idl>

module com { module sun { module star { module bridge {

/** service <type scope="com::sun::star::bridge">UnoUrlResolver</type>
implements this interface.
=/
published interface XUnoUrlResolver: com::sun::star::uno::XInterface
{
// method com::sun::star::bridge::XUnoUrlResolver: :resolve
/** resolves an object, on the UNO URL.
Y
com: :sun::star::uno::XInterface resolve([in] string sUnoUrl)
raises (com::sun::star::connection::NoConnectException,
com: :sun: :star::connection: :ConnectionSetupException,
com: :sun::star::lang::IllegalArgumentException) ;

219

http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html

220

#endif

We will discuss this idl file step by step below, and we will write our own UNOIDL specification
as soon as possible. The file specifying com.sun.star.bridge.XUnoUrlResolver is locatedin the
idl folder of your SDK installation, <SDK>/idl/com/sun/star/bridge/XUnoUrIResolver.idl.

UNOIDL definition file names have the extension . idl by convention. The descriptions must use
the US ASCII character set without special characters and separate symbols by whitespace, i.e.
blanks, tabs or linefeeds.

Preprocessing

Just like a C++ compiler, the UNOIDL compiler idlc can only use types it already knows. The idlc
knows 15 simple types such as boolean, int or string (they are summarized below). Whenever a
type other than a simple type is used in the idl file, its declaration has to be included first. For
instance, to derive an interface from the interface XInterface, include the corresponding file
XInterface.idl. Including means telling the preprocessor to read a given file and execute the
instructions found in it.

#include <com/sun/star/uno/XInterface.idl> // searched in include path given in -I parameter

#include "com/sun/star/uno/XInterface.idl" // searched in current path, then in include path

There are two ways to include idl files. A file name in angled brackets is searched on the include
path passed to idlc using its -I option. File names in double quotes are first searched on the current
path and then on the include path.

The XUnoUrlResolver definition above includes com.sun.star.uno.XInterface and the three
exceptions thrown by the method resolve (), com.sun.star.lang.IllegalArgumentException,
com.sun.star.connection.ConnectionSetupException and

com.sun.star.connection.NoConnectException.

In OpenOffice.org 2.0, it is no longer necessary to explicitly state that an interface type derives
from xInterface if an interface type derives from no other interface type, it is implicitly taken to
derive from XInterface. However, even in such situations it is important to explicitly include the
file xInterface.idl.

Furthermore, to avoid warnings about redefinition of already included types, use #ifndef and
#define as shown above. Note how the entire definition for XUnoUr1Resolver is enclosed
between #ifndef and #endif. The first thing the preprocessor does is to check if the flag
__com sun_star bridge XUnoUrlResolver idl has already been defined. If not, the flag is
defined and idlc continues with the definition of XUnoUrlResolver.

Adhere to the naming scheme for include flags used by the OpenOffice.org developers: Use the file
name of the IDL file that is to be included, add double underscores at the beginning and end of the
macro, and replace all slashes and dots by underscores.

For other preprocessing instructions supported by idlc refer to Bjarne Stroustrup: The C++
Programming Language.

Grouping Definitions in Modules
To avoid name clashes and allow for a better API structure, UNOIDL supports naming scopes. The
corresponding instruction is module:

module mymodule {
}i

OpenOffice.org 2.3 Developer's Guide « June 2007

http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://www.research.att.com/~bs/3rd.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/NoConnectException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/NoConnectException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/NoConnectException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/ConnectionSetupException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/ConnectionSetupException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/connection/ConnectionSetupException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/IllegalArgumentException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XUnoUrlResolver.html

Instructions are only known inside the module mymodule for every type defined within the pair of
braces of this module {} . Within each module, the type identifiers are unique. This makes an
UNOIDL module similar to a Java package or a C++ namespace.

Modules may be nested. The following code shows the interface xUnoUr1Resolver contained in
the module bridge that is contained in the module star, which is in turn contained in the module
sun of the module com.

module com { module sun { module star { module bridge {

// interface XUnoUrlResolver in module com::sun::star::bridge

IZER AR VAR Y

It is customary to write module names in lower case letters. Use your own module hierarchy for
your IDL types. To contribute code to OpenOffice.org, use the org: : openof fice namespace or
com: :sun: : star. Discuss the name choice with the leader of the API project on www.openoffice.org
to add to the latter modules. The com: : sun: : star namespace mirrors the historical roots of
OpenOffice.org in StarOffice and will probably be kept for compatibility purposes.

Types defined in UNOIDL modules have to be referenced using full-type or scoped names, that is,
you must enter all modules your type is contained in and separate the modules by the scope oper-
ator : :. For instance, to reference xUnoUrlResolver in another idl definition file, write

com: :sun::star::bridge: :XUnoUrlResolver.

Besides, modules have an advantage when it comes to generating language specific files. The tools
cppumaker and javamaker automatically create subdirectories for every referenced module, if
required. Headers and class definitions are kept in their own folders without any further effort.

One potential source of confusion is that UNOIDL and C++ use :: to separate the individual
identifiers within a name, whereas UNO itself (e.g., in methods like
com.sun.star.lang.XMultiComponentFactory:createInstanceWithContext) and Java

use

Simple Types

Before we can go about defining our first interface, you need to know the simple types you may
use in your interface definition. You should already be familiar with the simple UNO types from
the chapters 2 First Steps and 3 Professional UNO. Since we have to use them in idl definition files,
we repeat the type keywords and their meaning here.

221

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithContext

simple UNO type

Type description

char 16-bit unicode character type
boolean boolean type; true and false
byte 8-bit ordinal integer type

short signed 16-bit ordinal integer type

unsigned short

unsigned 16-bit ordinal integer type (deprecated)

long
unsigned long
hyper

unsigned hyper

signed 32-bit ordinal integer type

unsigned 32-bit integer type (deprecated)

signed 64-bit ordinal integer type

unsigned 64-bit ordinal integer type (deprecated)

float processor dependent float

double processor dependent double

string string of 16-bit unicode characters

any uni\'Iersa'l type, takes' every simple or compound UNO type, similar to
Variant in other environments or Object in Java

void Indicates that a method does not provide a return value

Defining an Interface

Interfaces describe aspects of objects. To specify a new behavior for the component, start with an
interface definition that comprises the methods offering the new behavior. Define a pair of plain
get and set methods in a single step using the attribute instruction. Alternatively, choose to
define your own operations with arbitrary arguments and exceptions by writing the method signa-
ture, and the exceptions the operation throws. We will first write a small interface definition with
attribute instructions, then consider the resolve () method in XUNoUrlResolver.

Let us assume we want to contribute an ImageShrink component to OpenOffice.org to create
thumbnail images for use in OpenOffice.org tables. There is already a
com.sun.star.document.XFilter interface offering methods supporting file conversion. In addi-

tion, a method is required to get and set the source and target directories, and the size of the
thumbnails to create. It is common practice that a service and its prime interface have corre-

sponding names, so our component shall have an org: :openoffice: :test::XImageShrink inter-
face with methods to do so through get and set operations.

Attributes

The attribute instruction creates these operations for the experimental interface definition:

Look at the specification for our XImageshrink interface':
(Components/Thumbs/org/openoffice/test/ XImageShrink.idl)

#ifndef _ org openoffice test XImageShrink idl
#define org openoffice test XImageShrink idl
#include <com/sun/star/uno/XInterface.idl> T
#include <com/sun/star/awt/Size.idl>

1 Perhaps in real life it would be better to define a more universal XBatchConverter interface for the source and target
directories and derive XImageShrink from it. There are other options as well, but we want to keep things simple.

222 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html

module org { module openoffice { module test {

interface XImageShrink : com::sun::star::uno::XInterface
{

[attribute] string SourceDirectory;

[attribute] string DestinationDirectory;

[attribute] com::sun::star::awt::Size Dimension;

#endif

We protect the interface from being redefined using #ifndef, then added #include
com.sun.star.uno.XInterface and the struct com.sun.star.awt.Size. These were found in the
API reference using its global index. Our interface will be known in the org: :openoffice: :test
module, so it is nested in the corresponding module instructions.

Define an interface using the interface instruction. It opens with the keyword interface, gives
an interface name and derives the new interface from a parent interface (also called super inter-
face). It then defines the interface body in braces. The interface instruction concludes with a
semicolon.

In this case, the introduced interface is XImageShrink. By convention, all interface identifiers start
with an X. Every interface must inherit from the base interface for all UNO interfaces xInterface
or from one of its derived interfaces. The simple case of single inheritance is expressed by a colon :
followed by the fully qualified name of the parent type. The fully qualified name of a UNOIDL type
is its identifier, including all containing modules separated by the scope operator : :. Here we
derive from com: :sun: :star: :uno: :XInterface directly. If you want to declare a new interface
that inherits from multiple interfaces, you do not use the colon notation, but instead list all inher-
ited interfaces within the body of the new interface:

interface XMultipleInheritance {
interface XBasel;
interface XBase2;

}i

UNOIDL allows forward declaration of interfaces used as parameters, return values or struct members.
However, an interface you want to derive from must be a fully defined interface.

After the super interface the interface body begins. It may contain attribute and method declara-
tions, and, in the case of a multiple-inheritance interface, the declaration of inherited interfaces.
Consider the interface body of xImageShrink. It contains three attributes and no methods. Inter-
face methods are discussed below.

An attribute declaration opens with the keyword attribute in square brackets, then it gives a
known type and an identifier for the attribute, and concludes with a semicolon.

In our example, the string attributes named SourceDirectory and DestinationDirectory and
acom::sun::star::awt::Size attribute known as Dimension were defined:

[attribute] string SourceDirectory;

[attribute] string DestinationDirectory;

[attribute] com::sun::star::awt::Size Dimension;
During code generation in Java and C++, the attribute declaration leads to pairs of get and set
methods. For instance, the Java interface generated by javamaker from this type description
contains the following six methods:

// from attribute SourceDir

public String getSourceDirectory () ;

public void setSourceDirectory (String sourcedir);

// from attribute DestinationDir

public String getDestinationDirectory () ;

public void setDestinationDirectory (String destinationdir);

// from attribute Dimension

223

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

public com.sun.star.awt.Size getDimension () ;

public void setDimension (com.sun.star.awt.Size dimension);
As an option, define that an attribute cannot be changed from the outside using a readonly flag.
To set this flag, write [attribute, readonly].The effect is that only a get () method is created
during code generation, but not a set () method. Another option is to mark an attribute as bound;
that flag is of interest when mapping interface attributes to properties, see 4.5.6 Writing UNO
Components - Simple Component in Java - Storing the Service Manager for Further Use and 4.6 Writing
UNO Components - C++ Component.

Since OpenOffice.org 2.0, there can be exception specifications for attributes, individually for the
operations of getting and setting an attribute:

[attribute] long Age {

get raises (DatabaseException); // raised when retrieving the age from the database fails
set raises (IllegalArgumentException, // raised when the new age is negative
DatabaseException) ; // raised when storing the new age in the database fails

}i

If no exception specification is given, only runtime exceptions may be thrown.

Methods

When writing a real component, define the methods by providing their signature and the exceptions
they throw in the idl file. Our XUnoUrlResolver example above features a resolve () method
taking a UNO URL and throwing three exceptions.
interface XUnoUrlResolver: com::sun::star::uno::XInterface
{
com: :sun::star::uno::XInterface resolve([in] string sUnoUrl)
raises (com::sun::star::connection::NoConnectException,
com: :sun: :star::connection: :ConnectionSetupException,
com: :sun::star::lang::IllegalArgumentException) ;
}i
The basic structure of a method is similar to C++ functions or Java methods. The method is defined
giving a known return type, the operation name, an argument list in brackets () and if necessary, a
list of the exceptions the method may throw. The argument list, the exception clause raises ()

and an optional [oneway] flag preceding the operation are special in UNOIDL.

Each argument in the argument list must commence with one of the direction flags [in], [
out] or [inout] before a known type and identifier for the argument is given. The direction
flag specifies how the operation may use the argument:

Direction Flags Description

for Methods

in Specifies that t he method shall evaluate the argument as input parameter,
but it cannot change it.

out Specifies that t he argument does not parameterize the method, instead the
method uses the argument as output parameter.

inout Specifies that the operation is parameterized by the argument and that the

method uses the argument as output parameter as well.

Try to avoid the [inout] and [out] qualifiers, as they are awkward to handle in certain
language bindings, like the Java language binding. The argument list can be empty. Multiple
arguments must be separated by commas.

Exceptions are given through an optional raises () clause containing a comma-separated list
of known exceptions given by their full name. The presence of a raises () clause means that
only the listed exceptions, com. sun.star.uno.RuntimeException and their descendants may
be thrown by the implementation. By specifying exceptions for metnods, the implementer of
your interface can return information to the caller, thus avoiding possible error conditions.

224 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html

If you prepend a [oneway] flag to an operation, the operation can be executed asynchronously if
the underlying method invocation system does support this feature. For example, a UNO Remote
Protocol (URP) bridge is such a system that supports oneway calls. A oneway operation can not
have a return value, or out or inout parameters. It must not throw other exceptions than
com.sun.star.uno.RuntimeException.

’ Although there are no general problems with the specification and the implementation of the UNO oneway

@ feature, there are several API remote usage scenarios where oneway calls cause deadlocks in
OpenOffice.org. Therefore it is not recommended to introduce new oneway methods with new
OpenOffice.org UNO APIs.

’ You can not override an attribute or a method inherited from a parent interface, that would not make sense

@ in an abstract specification anyway. Furthermore, overloading is not possible. The qualified interface identi-

fier in conjunction with the name of the method creates a unique method name.

Defining a Service

UNOIDL Services combine interfaces and properties to specify a certain functionality. In addition,
old-style services can include other services. For these purposes, interface, property and
service declarations are used within service specifications. Usually services are the basis for an
object implementation, although there are old-style services in the OpenOffice.org API that only
serve as foundation or addition to other services, but are not meant to be implemented by them-
selves™.

We are ready to assemble our ImageShrink service. Our service will read image files from a source
directory and write shrinked versions of the found images to a destination directory. Our XImage-
Shrink interface offers the needed capabilities, together with the interface com.sun.star.docu-
ment.xXFilter that supports two methods:

boolean filter([in] sequence< com::sun::star::beans::PropertyValue > aDescriptor)
void cancel ()

A new-style service can only encompass one interface, so we need to combine XImageShrink and
XFilter in a single, multiple-inheritance interface:

#ifndef _ org openoffice_ test XImageShrinkFilter idl_

#define _ org openoffice_test XImageShrinkFilter idl_

#include <com/sun/star/document/XFilter.idl>

#include <org/openoffice/test/XImageShrink.idl>

module org { module openoffice { module test {

interface XImageShrinkFilter {

interface XImageShrink;
interface com::sun::star::document::XFilter;

#endif

The following code shows the Imageshrink service specification:
(Components/Thumbs/org/openoffice /test/ImageShrink.idl)
#ifndef _ org openoffice test ImageShrink idl

#define _ org openoffice_test ImageShrink idl_

#include <org/openoffice/test/XImageShrinkFilter.idl>

module org { module openoffice { module test ({

service ImageShrink: XImageShrinkFilter;

2 The services com.sun.star.text.BaseFrame Or com.sun.star.style.CharacterProperties are part of other
services, but are not implemented as such anywhere.

225

http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/XFilter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrame.html

226

Yio¥i o}
#endif

Define a service using the service declaration. A new-style service opens with the keyword
service, followed by a service name, a colon, the name of the interface supported by the service,
and is terminated by a semicolon. The first letter of a service name should be an upper-case letter.

An old-style service is much more complex. It opens with the keyword service, followed by a
service name and the service body in braces. The service instruction concludes with a semicolon.
The body of a service can reference interfaces and services using interface and service instruc-
tions, and it can identify properties supported by the service through [property] instructions.

Interface keywords followed by interface names in a service body indicates that the service
supports these interfaces. By default, the interface forces the developer to implement this
interface. To suggest an interface for a certain service, prepend an [optional] flag in front of
the keyword interface. This weakens the specification to a permission. An optional interface
can be implemented. Use one interface declaration for each supported interface or give a
comma-separated list of interfaces to be exported by a service. You must terminate the inter-
face instruction using a semicolon.

service instructions in a service body include other services. The effect is that all interface and
property definitions of the other services become part of the current service. A service reference
can be optional using the [optional] flag in front of the service keyword. Use one declara-
tion per service or a comma-separated list for the services to reference. The service declara-
tion ends with a semicolon.

[property] declaration s describe qualities of a service that can be reached from the outside
under a particular name and type. As opposed to interface attributes, these qualities are not
considered to be a structural part of a service. Refer to the section 3.3.4 Professional UNO - UNO
Concepts - Properties in the chapter 3 Professional UNO to determine when to use interface attri-
butes and when to introduce properties in a service . The property keyword must be enclosed
in square brackets, and continue with a known type and a property identifier. Just like a service
and an interface, make a property non-mandatory writing [property, optional]. Besides
optional, there is a number of other flags to use with properties. The following table shows all
flags that can be used with [property]:

Property Flags Description

optional Property is non-mandatory.

readonly The value of the property cannot be changed using the setter methods for prop-
erties, such as setPropertyValue (string name) .

bound Changes of values are broadcast to com. sun.star.beans.XProperty-
ChangeListeners registered with the component.

constrained The component must broadcast an event before a value changes, listeners can
veto.

maybeambiguous The value cannot be determined in some cases, for example, in multiple selec-
tions.

maybedefault The value might come from a style or the application environment instead of

from the object itself.

maybevoid The property type determines the range of possible values, but sometimes there
may be situations where there is no information available. Instead of defining
special values for each type denoting that there are no meaningful values, the
UNO type void can be used. Its meaning is comparable to null in relational
databases.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyChangeListener.html

Property Flags Description

removable The property is removable. If a property is made removable, you must check
for the existence of a property using hasPropertyByName () at the interface
com.sun.star.beans.XPropertySetInfo and consider providing the
capability to add or remove properties using com. sun.star.beans.XProp-

ertyContainer.

transient The property will not be stored if the object is serialized (made persistent).

Several properties of the same type can be listed in one property declaration. Remember to
add a semicolon at the end. Implement the interface com.sun.star.beans.XPropertySet
when putting properties in your service, otherwise the properties specified will not work for
others using the component.

Some old-style services, which specify no interfaces at all, only properties, are used as a sequence of
com.sun.star.beans.PropertyValue in OpenOffice.org, for example,
com.sun.star.document .MediaDescriptor.

The following UNOIDL snippet shows the service, the interfaces and the properties supported by
the old-style service com.sun.star.text.TextDocument as defined in UNOIDL. Note the optional
interfaces and the optional and read-only properties.

service TextDocument
{

service com::sun::star::document::0fficeDocument;

interface com::sun::star::text::XTextDocument;
interface com::sun::star::util::XSearchable;

interface com::sun::star::util::XRefreshable;

interface com::sun::star::util::XNumberFormatsSupplier;

[optional] interface com::sun::star::text::XFootnotesSupplier;
[optional] interface com::sun::star::text::XEndnotesSupplier;
[optional] interface com::sun::star::util::XReplaceable;

[optional] interface com::sun::star::text::XPagePrintable;
[optional] interface com::sun::star::text::XReferenceMarksSupplier;

]
]
]
]
]
[optional] interface com::sun::star::text::XLineNumberingSupplier;
]
]
]
]
]
]

[optional] interface com::sun::star::text::XChapterNumberingSupplier;
[optional] interface com::sun::star::beans::XPropertySet;

[optional] interface com::sun::star::text::XTextGraphicObjectsSupplier;
[optional] interface com::sun::star::text::XTextEmbeddedObjectsSupplier;
[optional] interface com::sun::star::text::XTextTablesSupplier;
[optional] interface com::sun::star::style::XStyleFamiliesSupplier;

[optional, property] com::sun::star::lang::Locale CharLocale;
[optional, property] string WordSeparator;

[optional, readonly, property] long CharacterCount;
[optional, readonly, property] long ParagraphCount;
[optional, readonly, property] long WordCount;

i
You might encounter two more keywords in old-style service bodies. The keyword observes can stand in

front of interface references and means that the given interfaces must be "observed". Since the observes
concept is disapproved of, no further explanation is provided.

If a service references another service using the keyword needs in front of the reference, then this service
depends on the availability of the needed service at runtime. Services should not use needs as it is consid-
ered too implementation specific.

Defining a Sequence

A sequence in UNOIDL is an array containing a variable number of elements of the same UNOIDL
type. The following is an example of a sequence term:

// this term could occur in a UNOIDL definition block somewhere
sequence< com::sun::star::uno::XInterface >

227

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/MediaDescriptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertyContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySetInfo.html

228

It starts with the keyword sequence and gives the element type enclosed in angle brackets <>. The
element type must be a known type. A sequence type can be used as parameter, return value,
property or struct member just like any other type. Sequences can also be nested, if necessary.

// this could be a nested sequence definition
sequence< sequence< long > >

// this could be an operation using sequences in some interface definition
sequence< string > getNamesOfIndex (sequence< long > indexes) ;

Defining a Struct

A struct is a compound type which puts together arbitrary UNOIDL types to form a new data
type. Its member data are not encapsulated, rather they are publicly available. Structs are
frequently used to handle related data easily, and the event structs broadcast to event listeners.

A plain struct instruction opens with the keyword struct, gives an identifier for the new struct
type and has a struct body in braces. It is terminated by a semicolon. The struct body contains a list
of struct member declarations that are defined by a known type and an identifier for the struct
member. The member declarations must end with a semicolon, as well.

#ifndef _ com sun_star reflection_ ParamInfo idl_
#define com sun star reflection ParamInfo idl

#include <com/sun/star/reflection/ParamMode.idl>
module com { module sun { module star { module reflection {
interface XIdlClass; // forward interface declaration

struct ParamInfo

{
string aName;
ParamMode aMode;
XIdlClass aType;

#endif

UNOIDL supports inheritance of struct types. Inheritance is expressed by a colon : followed by
the full name of the parent type. A struct type recursively inherits all members of the parent struct
and their parents. For instance, derive from the struct com.sun.star.lang.EventObject to put
additional information about new events into customized event objects to send to event listeners.

// com.sun.star.beans.PropertyChangeEvent inherits from com.sun.star.lang.EventObject
// and adds property-related information to the event object
struct PropertyChangeEvent : com::sun::star::lang::EventObject
{
string PropertyName;
boolean Further;
long PropertyHandle;
any OldValue;
any NewValue;

}i
A new feature of OpenOffice.org 2.0 are polymorphic struct types. A polymorphic struct type

template is similar to a plain struct type, but it has one or more type parameters enclosed in angle
brackets <>, and its members can have these parameters as types:

// A polymorphic struct type template with two type parameters:
struct Poly<T,U> {

T memberl;

T member2;

U member3;

long member4;
bi

A polymorphic struct type template is not itself a UNO type it has to be instantiated with actual
type arguments to be used as a type:

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/EventObject.html

// Using an instantiation of Poly as a type in UNOIDL:
interface XIfc { Poly<boolean, any> fn(); };

Defining an Exception

An exception type is a type that contains information about an error . If an operation detects an
error that halts the normal process flow, it must raise an exception and send information about the
error back to the caller through an exception object. This causes the caller to interrupt its normal
program flow as well and react according to the information received in the exception object. For
details about exceptions and their implementation, refer to the chapters 3.4 Professional UNO -
UNO Language Bindings and 3.3.7 Professional UNO - UNO Concepts - Exception Handling.

There are a number of exceptions to use. The exceptions should be sufficient in many cases,
because a message string can be sent back to the caller. When defining an exception, do it in such a
way that other developers could reuse it in their contexts.

An exception declaration opens with the keyword exception, gives an identifier for the new
exception type and has an exception body in braces. It is terminated by a semicolon. The exception
body contains a list of exception member declarations that are defined by a known type and an
identifier for the exception member. The member declarations must end with a semicolon, as well.

Exceptions must be based on com.sun.star.uno.Exception Or com.sun.star.uno.RuntimeEx-
ception, directly or indirectly through derived exceptions of these two exceptions.
com.sun.star.uno.Exceptions can only be thrown in operations specified to raise them while
com.sun.star.uno.RuntimeExceptions can always occur. Inheritance is expressed by a colon :,
followed by the full name of the parent type.

// com.sun.star.uno.Exception is the base exception for all exceptions
exception Exception {

string Message;

XInterface Context;
bi

// com.sun.star.lang.IllegalArgumentException tells the caller which
// argument caused trouble
exception IllegalArgumentException: com::sun::star::uno::Exception
{

/** identifies the position of the illegal argument.

<p>This field is -1 if the position is not known.</p>
*/
short ArgumentPosition;

bi

// com.sun.star.uno.RuntimeException is the base exception for serious errors

// usually caused by programming errors or problems with the runtime environment
exception RuntimeException : com::sun::star::uno::Exception ({

}i

// com.sun.star.uno.SecurityException is a more specific RuntimeException

exception SecurityException : com::sun::star::uno::RuntimeException {

}i

Predefining Values

Predefined values can be provided, so that implementers do not have to use cryptic numbers or
other literal values. There are two kinds of predefined values, constants and enums. Constants can
contain values of any basic UNO type, except void. The enums are automatically numbered 1ong
values.

Const and Constants

The constants type is a container for const types. A constants instruction opens with the
keyword constants, gives an identifier for the new group of const values and has the body in

229

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/RuntimeException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/Exception.html

braces. It terminates with a semicolon. The constants body contains a list of const definitions that
define the values of the members starting with the keyword const followed by a known type
name and the identifier for the const in uppercase letters. Each const definition must assign a
value to the const using an equals sign. The value must match the given type and can be an
integer or floating point number, or a character, or a suitable const value or an arithmetic term
based on the operators in the table below. The const definitions must end with a semicolon, as
well.

#ifndef _ com sun_star awt FontWeight idl
#define _ com sun_star_ awt_ FontWeight_ idl_

module com { module sun { module star { module awt {

constants FontWeight

{
const float DONTKNOW = 0.000000;
const float THIN = 50.000000;
const float ULTRALIGHT = 60.000000;
const float LIGHT = 75.000000;
const float SEMILIGHT = 90.000000;
const float NORMAL = 100.000000;
const float SEMIBOLD = 110.000000;
const float BOLD = 150.000000;
const float ULTRABOLD = 175.000000;
const float BLACK = 200.000000;

Operators Allowed in const Meaning

+ addition

- subtraction

* multiplication

/ division

% modulo division

- negative sign
+ positive sign

| bitwise or

bitwise xor
& bitwise and
~ bitwise not

>> << bitwise shift right, shift left

Use constants to group const types. In the Java language, binding a constants group leads to one class
=] for all const members, whereas a single const is mapped to an entire class.

Enum

An enum type holds a group of predefined 1ong values and maps them to meaningful symbols. It is
equivalent to the enumeration type in C++. An enum instruction opens with the keyword enum,
gives an identifier for the new group of enum values and has an enum body in braces. It terminates
with a semicolon. The enum body contains a comma-separated list of symbols in uppercase letters
that are automatically mapped to 1ong values counting from zero, by default.

#ifndef = com sun star style ParagraphAdjust idl
#define _ com sun_star style ParagraphAdjust_idl

module com { module sun { module star { module style {

enum ParagraphAdjust

230 OpenOffice.org 2.3 Developer's Guide « June 2007

LEFT,
RIGHT,
BLOCK,
CENTER,
STRETCH
}i
Yioliods o}
#endif

In this example, com.sun.star.style.ParagraphAdjust:LEFT corresponds to 0, ParagraphAd-
just. RIGHT corresponds to 1 and so forth.

An enum member can also be set to a 1ong value using the equals sign. All the following enum
values are then incremented starting from this value. If there is another assignment later in the
code, the counting starts with that assignment:

enum Error {
SYSTEM = 10, // value 10

RUNTIME, // value 11
FATAL, // value 12
USER = 30, // value 30
SOFT // value 31

bi

The explicit use of enum values is deprecated and should not be used. It is a historical characteristic of the
enum type but it makes not really sense and makes, for example language bindings unnecessarily compli-
cated.

Using Comments

Comments are code sections ignored by idlc. In UNOIDL, use C++ style comments. A double slash
// marks the rest of the line as comment. Text enclosed between /* and */ is a comment that may
span over multiple lines.

service ImageShrink

{
// the following lines define interfaces:
interface org::openoffice::test::XImageShrink; // our home-grown interface
interface com::sun::star::document::XFilter;

/* we could reference other interfaces, services and properties here.
However, the keywords uses and needs are deprecated
Y
bi

Based on the above, there are documentation comments that are extracted when idl files are
processed with autodoc, the UNOIDL documentation generator. Instead of writing /* or //to mark
a plain comment, write /** or /// to create a documentation comment.

/** Don't repeat asterisks within multiple line comments,
* <- as shown here

Y

/// Don't write multiple line documentation comments using triple slashes,
/// since only this last line will make it into the documentation

Our xUnoUrlResolver sample idl file contains plain comments and documentation comments.

/** service <type scope="com::sun::star::bridge">UnoUrlResolver</type>
implements this interface.

*/

interface XUnoUrlResolver: com::sun::star::uno::XInterface

{
// method com::sun::star::bridge::XUnoUrlResolver: :resolve
/** resolves an object, on the UNO URL.

w

231

http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphAdjust.html#LEFT
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphAdjust.html#LEFT
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphAdjust.html#LEFT

Note the additional <type/> tag in the documentation comment pointing out that the service
UnoUrlResolver implements the interface XUnoUrlResolver. This tag becomes a hyperlink in
HTML documentation generated from this file. The chapter B IDL Documentation Guide provides a
comprehensive description for UNOIDL documentation comments.

Singleton

A singleton declaration defines a global name for a UNO object and determines that there can
only be one instance of this object that must be reachable under this name. The singleton instance
can be retrieved from the component context using the name of the singleton. If the singleton
has not been instantiated yet, the component context creates it. A new-style singleton declaration,
that binds a singleton name to an object with a certain interface type, looks like this:

singleton thePackageManagerFactory: com::sun::star::depoyment::XPackageManager;

There are also old-style singletons, which reference (old-style) services instead of interfaces.

Reserved Types

There are types in UNOIDL which are reserved for future use. The idlc will refuse to compile the
specifications if they are tried.

Array

The keyword array is reserved, but it cannot be used in UNOIDL. There will be sets containing a
fixed number of elements, as opposed to sequences, that can have an arbitrary number of elements.

Union

There is also a reserved keyword for union types that cannot be used in UNOIDL. A union will
look at a variable value from more than one perspective. For instance, a union for a long value is
defined and this same value is accessed as a whole, or accessed by its high and low part separately
through a union.

Published Entities

A new feature of OpenOffice.org 2.0 is the UNOIDL published keyword. If you mark a declara-
tion (of a struct, interface, service, etc.) as published, you give the guarantee that you will not
change the declaration in the future, so that clients of your API can depend on that. On the other
hand, leaving a declaration unpublished is like a warning to your clients that the declared entity
may change or even vanish in a future version of your APIL. The idlc will give an error if you try to
use an unpublished entity in the declaration of a published one, as that would not make sense.

The OpenOffice.org API has always been intended to never change in incompatible ways. This is
now reflected formally by publishing all those entities of the OpenOffice.org 2.0 API that were
already available in previous API versions. Some new additions to the API have been left unpub-
lished, however, to document that they are probably not yet in their final form. When using such
additions, keep in mind that you might need to adapt your code to work with future versions of
OpenOffice.org. Generally, each part of the OpenOffice.org API should stabilize over time,
however, and so each addition should eventually be published. Consider this as a means in
attempting to make new functionality available as early as possible, and at the same time ensure
that no APIs are fixed prematurely, before they have matured to a truly useful form.

232 OpenOffice.org 2.3 Developer's Guide « June 2007

4.2.2 Generating Source Code from UNOIDL Definitions

The type description provided in .idl files is used in the subsequent process to create type informa-
tion for the service manager and to generate header and class files. Processing the UNOIDL defini-
tions is a three-step process.

1. Compile the .idl files using idlc . The result are .urd files (UNO reflection data) containing binary
type descriptions.

2. Merge the .urd files into a registry database using regmerge . The registry database files have the
extension .rdb (registry database). They contain binary data describing types in a tree-like struc-
ture starting with / as the root. The default key for type descriptions is the /UCR key (UNO
core reflection).

3. Generate sources from registry files using javamaker or cppumaker . The tools javamaker and cppu-
maker map UNOIDL types to Java and C++ as described in the chapter 3.4 Professional UNO -
UNO Language Bindings. The registries used by these tools must contain all types to map to the
programming language used, including all types referenced in the type descriptions. Therefore,
javamaker and cppumaker need the registry that was merged, but the entire office registry as
well. OpenOffice.org comes with a complete registry database providing all types used by UNO
at runtime. The SDK uses the database (type library) of an existing OpenOffice.org installation.

The following shows the necessary commands to create Java class files and C++ headers from .id!
files in a simple setup under Linux. We assume the jars from <OFFICE_PROGRAM_PATH>/classes
have been added to your CLASSPATH, the SDK is installed in /home/sdk, and /home/sdk/linux/bin is
in the PATH environment variable, so that the UNO tools can be run directly. The project folder is
/home/sdk/Thumbs and it contains the above .id! file XImageShrink.idl.

make project folder the current directory
cd /home/sdk/Thumbs

compile XImageShrink.idl using idlc

usage: idlc [-options] file 1.idl ... file n.idl

-C adds complete type information including services

-I includepath tells idlc where to look for include files

#

idlc writes the resulting urds to the current folder by default
idle -C -I../idl XImageShrink.idl

create registry database (.rdb) file from UNO registry data (.urd) using regmerge

usage: regmerge mergefile.rdb mergeKey regfile l.urd ... regfile n.urd

mergeKey entry in the tree-like rdb structure where types from .urd should be recorded, the tree
starts with the root / and UCR is the default key for type descriptions

#

regmerge writes the rdb to the current folder by default
regmerge thumbs.rdb /UCR XImageShrink.urd

generate Java class files for new types from rdb

-B base node to look for types, in this case UCR

-T type to generate Java files for

-nD do not generate sources for dependent types, they are available in the Java UNO jar files

#

javamaker creates a directory tree for the output files according to

the modules the given types were placed in. The tree is created in the current folder by default
javamaker -BUCR -Torg.openoffice.test.XImageShrink -nD <OFFICE PROGRAM PATH>/types.rdb thumbs.rdb

generate C++ header files (hpp and hdl) for new types and their dependencies from rdb
-B base node to look for types, in this case UCR
-T type to generate Java files for

cppumaker creates a directory tree for the output files according to
the modules the given types were placed in. The tree is created in the current folder by default
cppumaker -BUCR -Torg.openoffice.test.XImageShrink <OFFICE PROGRAM PATH>/types.rdb thumbs.rdb

After issuing these commands you have a registry database thumbs.rdb and a Java class file
XImageShrink.class. (In versions of OpenOffice.org prior to 2.0, javamaker produced Java source files
instead of class files; you therefore had to call javac on the source files in an additional step.) You
can run reguiew against thumbs.rdb to see what regmerge has accomplished.

233

regview thumbs.rdb

The result for our interface XImageShrink looks like this:
Registry "file:///home/sdk/Thumbs/thumbs.rdb":

/
/ UCR
/ org
/ openoffice
/ test
/ XImageShrink

Value: Type

Size

Data

RG_VALUETYPE BINARY

316

minor version: 0

major version: 1

type: 'interface'

uik: { 0x00000000-0x0000-0x0000-0x00000000-0x00000000 }

name: 'org/openoffice/test/XImageShrink'
super name: 'com/sun/star/uno/XInterface'
Doku: ""
IDL source file: "/home/sdk/Thumbs/XImageShrink.idl"
number of fields: 3
field #0:
name='SourceDirectory'
type='string'
access=READWRITE

Doku: ""
IDL source file: ""

field #1:
name='DestinationDirectory’
type='string'
access=READWRITE

Doku: ""
IDL source file: ""

field #2:
name='Dimension'
type='com/sun/star/awt/Size’
access=READWRITE

Doku: ""

IDL source file: ""
number of methods: 0
number of references: 0

Source generation can be fully automated with makefiles. For details, see the sections 4.5.9 Writing
UNO Components - Simple Component in Java - Running and Debugging Java Components and 4.6.10
Writing UNO Components - C++ Component - Building and Testing C++ Components below. You are
now ready to implement your own types and interfaces in a UNO component. The next section
discusses the UNO core interfaces to implement in UNO components.

4.3 Component Architecture

UNO components are archive files or dynamic link libraries with the ability to instantiate objects
which can integrate themselves into the UNO environment. For this purpose, components must
contain certain static methods (Java) or export functions (C++) to be called by a UNO service
manager. In the following, these methods are called component operations.

There must be a method to supply single-service factories for each object implemented in the
component. Through this method, the service manager can get a single factory for a specific object
and ask the factory to create the object contained in the component. Furthermore, there has to be a
method which writes registration information about the component, which is used when a compo-
nent is registered with the service manager. In C++, an additional function is necessary that
informs the component loader about the compiler used to build the component.

The component operations are always necessary in components and they are language specific.
Later, when Java and C++ are discussed, we will show how to write them.

234 OpenOffice.org 2.3 Developer's Guide « June 2007

UNO components Objects implement

* provide component operations to be called by e core UNO interfaces

the service manager and the component loader « one or more services exporting

* implement one or several UNO objects additional interfaces

UNO component

SingleServiceFactory
Java Archive (jar) for srv1 '>

__getServiceFactory () instantiates
__writeRegistryServicelnfo ()

C++ Dynamic Link Library

component_getFactory ()
component_writelnfo () . .
component_getimplementionEnvironment () SingleServiceFactory >

for srv2

m o

forsrv3_4
instantiates

Service3

Service4q

0000

Hllustration 4.1: A Component implementing three UNO objects

The illustration shows a component which contains three implemented objects. Two of them, srv1
and srv2 implement a single service specification (Servicel and Service2), whereas srv3_4 supports
two services at once (Service3 and Service4).

The objects implemented in a component must support a number of core UNO interfaces to be
fully usable from all parts of the OpenOffice.org application. These core interfaces are discussed in
the next section. The individual functionality of the objects is covered by the additional interfaces
they export. Usually these interfaces are enclosed in a service specification.

4.4 Core Interfaces to Implement

It is important to know where the interfaces to implement are located. The interfaces here are
located at the object implementations in the component. When writing UNO components, the
desired methods have to be implemented into the application and also, the core interfaces used to
enable communication with the UNO environment. Some of them are mandatory, but there are
others to choose from.

Interface Required Should be Optional Special Cases Helper class
implemented available for
C++ and Java
XInterface b *
XTypeProvider ° °

235

Interface Required Should be Optional Special Cases | Helper class
implemented available for
C++ and Java

XServicelnfo o

XWeak 4 4
XComponent d d
Xlnitialization °

XMain °

XAggregation o

XUnoTunnel L

The interfaces listed in the table above have been characterized here briefly. More descriptions of
each interface are provided later, as well as if helpers are available and which conditions apply.

com.sun.star.uno.XInterface
The component will not work without it. The base interface xInterface gives access to higher
interfaces of the service and allows other objects to tell the service when it is no longer needed,
so that it can destroy itself.

// com::sun::star::uno::XInterface

any queryInterface([in] type aType);

[oneway] void acquire(); // increase reference counter in your service implementation

[oneway] void release(); // decrease reference counter, delete object when counter becomes zero
Usually developers do not call acquire () explicitly, because it is called automatically by the
language bindings when a reference to a component is retrieved through UnoRuntime.query-
Interface () Oor Reference<destInterface> (sourcelInterface, UNO QUERY) . The counter-
part release () is called automatically when the reference goes out of scope in C++ or when
the Java garbage collector throws away the object holding the reference.

com.sun.star.lang.XTypeProvider
This interface is used by scripting languages such as OpenOffice.org Basic to get type informa-
tion. OpenOffice.org Basic cannot use the component without it.

// com::sun::star::lang::XTypeProvider

sequence<type> getTypes () ;

sequence<byte> getImplementationId() ;

It is possible that xTypeProvider and xServiceInfo (below) will be deprecated in the future,
and that alternative, language-binding specific mechanisms will be made available to query an
object for its characteristics.

com.sun.star.lang.XServicelInfo
This interface is used by other objects to get information about the service implementation.

// com::sun::star::lang::XServicelInfo

string getImplementationName () ;
boolean supportsService([in] string ServiceName) ;
sequence<string> getSupportedServiceNames () ;

com.sun.star.uno.XWeak
This interface allows clients to keep a weak reference to the object. A weak reference does not
prevent the object from being destroyed if another client keeps a hard reference to it, therefore
it allows a hard reference to be retrieved again. The technique is used to avoid cyclic references.
Even if the interface is not required by you, it could be implemented for a client that may want
to establish a weak reference to an instance of your object.

// com.sun.star.uno.XWeak

236 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

com: :sun: :star::uno: :XAdapter queryAdapter(); // creates Adapter

com.sun.star.lang.XComponent
This interface is used if cyclic references can occur in the component holding another object and
the other object is holding a reference to that component. It can be specified in the service
description who shall destroy the object.

// com::sun::star::lang::XComponent

void dispose(); //an object owning your component may order it to delete itself using dispose ()
void addEventListener (com::sun::star::lang::XEventListener xListener); // add dispose listeners
void removeEventListener (com::sun::star::lang::XEventListener alistener); // remove them

com.sun.star.lang.XInitialization
This interface is used to allow other objects to use createInstanceWithArguments () or
createInstanceWithArgumentsAndContext () with the component. It should be implemented
and the arguments processed in initialize():

// com::sun::star::lang::XInitialization

void initialize (sequence< any > aArguments) raises (com::sun::star::uno::Exception);

com.sun.star.lang.XMain
This interface is for use with the uno executable to instantiate the component independently
from the OpenOffice.org service manager.

// com.sun.star.lang.XMain

long run (sequence< string > aArguments) ;

com. sun.star.uno.XAggregation
This interfaces makes the implementation cooperate in an aggregation. If implemented, other
objects can aggregate to the implementation. Aggregated objects behave as if they were one. If
another object aggregates the component, it holds the component and delegates calls to it, so
that the component seems to be one with the aggregating object.

// com.sun.star.uno.XAggregation

void setDelegator (com.sun.star.uno.XInterface pDelegator) ;
any queryAggregation (type aType) ;

com.sun.star.lang.XUnoTunnel
This interface provides a pointer to the component to another component in the same process.
This can be achieved with xUnoTunnel. XUnoTunnel should not be used by new components,
because it is to be used for integration of existing implementations, if all else fails.

By now you should be able to decide which interfaces are interesting in your case. Sometimes the
decision for or against an interface depends on the necessary effort as well. The following section
discusses for each of the above interfaces how you can take advantage of pre-implemented helper
classes in Java or C++, and what must happen in a possible implementation, no matter which
language is used.

4.4.1 XInterface

All service implementations must implement com. sun.star.uno.XInterface. If a Java compo-
nent is derived from a Java helper class that comes with the SDK, it supports XInterface automat-
ically. Otherwise, it is sufficient to add xInterface or any other UNO interface to the implements
list. The Java UNO runtime takes care of xInterface. In C++, there are helper classes to inherit
that already implement xInterface. However, if XInterface is to be implemented manually,
consider the code below.

237

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XUnoTunnel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XUnoTunnel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XUnoTunnel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAggregation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAggregation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAggregation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

238

The IDL specification for com.sun.star.uno.XInterface looks like this:

// module com::sun::star::uno

interface XInterface

{
any queryInterface([in] type aType);
[oneway] void acquire();
[oneway] void release();

Requirements for querylInterface()

When queryInterface () is called, the caller asks the implementation if it supports the interface
specified by the type argument. The UNOIDL base type stores the name of a type and its
com.sun.star.uno.TypeClass. The call must return an interface reference of the requested type if
it is available or a void any if it is not. There are certain conditions a queryInterface () imple-
mentation must meet:

Constant Behaviour
If queryInterface () on a specific object has once returned a valid interface reference for a
given type, it must always return a valid reference for any subsequent queryInterface () call
for the same type on this object. A query for XInterface must always return the same reference.

If queryInterface () on a specific object has once returned a void any for a given type, it must
always return a void any for the same type.

Symmetry
If queryInterface () for XBar on a reference xFoo returns a reference xBar, then queryInter-
face () on reference xBar for type XFoo must return xFoo or calls made on the returned refer-
ence must be equivalent to calls to xFoo.

Object Identity
In C++, two objects are the same if their XInterface are the same. The queryInterface () for
XInterface will have to be called on both. In Java, check for the identity by calling the runtime
function com.sun.star.uni.UnoRuntime.areSame ().

The reason for this specifications is that a UNO runtime environment may choose to cache query-
Interface () calls. The rules are identical to the rules of the function QueryInterface () in MS
COM.

If you want to implement queryInterface () inJava, for example, you want to export less interfaces than
you implement, your class must implement the Java interface com.sun.star.uno.JQueryInterface.

Reference Counting

The methods acquire () and release () handle the lifetime of the UNO object. This is discussed in
detail in chapter 3.3.8 Professional UNO - UNO Concepts - Lifetime of UNO Objects. Acquire and
release must be implemented in a thread-safe fashion. This is demonstrated in C++ in the section
about C++ components below.

4.4.2 XTypeProvider

Every UNO object should implement the com.sun.star.lang.XTypeProvider interface.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/TypeClass.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

Some applications need to know which interfaces an UNO object supports, for example, the
OpenOffice.org Basic engine or debugging tools, such as the Instancelnspector. The
com.sun.star.lang.XTypeProvider interface was introduced to avoid going through all known
interfaces calling queryInterface () repetitively. The XTypeProvider interface is implemented by
Java and C++ helper classes. If the xTypeProvider must be implemented manually, use the
following methods:

// module com::sun::star::lang
interface XTypeProvider: com::sun::star::uno::XInterface

{
sequence<type> getTypes () ;
sequence<byte> getImplementationId() ;
b
The sections about Java and C++ components below show examples of XTypeProvider implemen-
tations.

Provided Types

The com.sun.star.lang.XTypeProvider:getTypes () method must return a list of types for all
interfaces that queryInterface () provides. The OpenOffice.org Basic engine depends on this
information to establish a list of method signatures that can be used with an object.

ImplementationID

For caching purposes, the getImplementationId () method has been introduced. The method
must return a byte array containing an identifier for the implemented set of interfaces in this
implementation class. It is important that one ID maps to one set of interfaces, but one set of inter-
faces can be known under multiple IDs. Every implementation class should generate a static ID.

4.4.3 XServicelnfo

Every service implementation should export the com.sun.star.lang.XServiceInfo interface.
XServiceInfo must be implemented manually, because only the programmer knows what
services the implementation supports. The sections about Java and C++ components below show
examples for XServiceInfo implementations.

This is how the IDL specification for xServiceInfo looks like:

// module com::sun::star::lang
interface XServiceInfo: com::sun::star::uno::XInterface
{
string getImplementationName () ;
boolean supportsService([in] string ServiceName) ;
sequence<string> getSupportedServiceNames () ;

Implementation Name

The method getImplementationName () provides access to the implementation name of a service
implementation. The implementation name uniquely identifies one implementation of service
specifications in a UNO object. The name can be chosen freely by the implementation alone,
because it does not appear in IDL. However, the implementation should adhere to the following
naming conventions:

239

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html#getTypes
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html#getTypes
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html#getTypes
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

240

Company dot "comp" dot module dot unique object implemented service(s)

prefix name name in module
com.sun.star . comp . forms . ODataBaseForm com.sun.star.forms.DataBaseForm
org.openoffice | . comp . test . OThumbs org.openoffice.test.ImageShrink

org.openoffice.test. ThumbnailInsert

If an object implements one single service, it can use the service name to derive an implementation
name. Implementations of several services should use a name that describes the entire object.

If a createInstance () is called at the service manager using an implementation name, an instance
of exactly that implementation is received. An implementation name is equivalent to a class name
in Java. A Java component simply returns the fully qualified class name in get Implementation-
Name ().

It is good practice to program against the specification and not against the implementation, otherwise, your
application could break with future versions. OpenOffice.orgs API implementation is not supposed to be
compatible, only the specification is.

Supported Service Names

The methods getSupportedServiceNames () and supportsService () deal with the availability
of services in an implemented object. Note that the supported services are the services imple-
mented in one class that supports these services, not the services of all implementations contained
in the component file. If the illustration 4.1: A Component implementing three UNO objects, xser-
viceInfo is exported by the implemented objects in a component, not by the component. That
means, srv3_4 must support xServiceInfo and return "Service3" and "Service4" as supported
service names.

The service name identifies a service as it was specified in IDL. If an object is instantiated at the
service manager using the service name, an object that complies to the service specification is
returned.

The single service factories returned by components that are used to create instances of an implementation
through their interfaces com. sun.star.lang.XSingleComponentFactory or
com.sun.star.lang.XSingleServiceFactory must support XServiceInfo. The single factories
support this interface to allow UNO to inspect the capabilities of a certain implementation before instanti-
ating it. You can take advantage of this feature through the com.sun.star.container.XContentEnu-
merationAccess interface of a service manager.

4.4.4 XWeak

A component supporting xWeak offers other objects to hold a reference on itself without preventing
it from being destroyed when it is no longer needed. Thus, cyclic references can be avoided easily.
The chapter 3.3.8 Professional UNO - UNO Concepts - Lifetime of UNO Objects discusses this in detail.
In Java, derive from the Java helper class com.sun.star.1lib.uno.helper.WeakBase to support
xWeak. If a C++ component is derived from one of the : : cppu: :Weak. . . ImplHelperNN template
classes as proposed in the section 4.6 Writing UNO Components - C++ Component, a XWweak support
is obtained, virtually for free. For the sake of completeness, this is the xweak specification:

// module com::sun::star::uno::XWeak

interface XWeak: com::sun::star::uno::XInterface

{

com: :sun::star::uno: :XAdapter queryAdapter () ;

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XContentEnumerationAccess.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html

4.4.5 XComponent

If the implementation holds a reference to another UNO object internally, there may be a problem
of cyclic references that might prevent your component and the other object from being destroyed
forever. If it is probable that the other object may hold a reference to your component, implement
com.sun.star.lang.XComponent that contains a method dispose () . Chapter 3.3.8 Professional
UNO - UNO Concepts - Lifetime of UNO Objects discusses the intricacies of this issue.

Supporting XComponent in a C++ or Java component is simple, because there are helper classes to
derive from that implement xComponent. The following code is an example if you must implement
XComponent manually.

The interface xComponent specifies these operations:
// module com::sun::star::lang

interface XComponent: com::sun::star::uno::XInterface
{
void dispose () ;
void addEventListener([in] XEventListener xListener);
void removeEventListener([in] XEventListener alListener);
bi

XComponent uses the interface com.sun.star.lang.XEventListener:

// module com::sun::star::lang
interface XEventListener: com::sun::star::uno::XInterface

{
void disposing([in] com::sun::star::lang::EventObject Source);

}i

Disposing of an XComponent

The idea behind xComponent is that the object is instantiated by a third object that makes the third
object the owner of first object. The owner is allowed to call dispose () . When the owner calls
dispose () at your object, it must do three things:

Release all references it holds.

Inform registered XEventListeners that it is being disposed of by calling their method
disposing() .

Behave as passive as possible afterwards. If the implementation is called after being disposed,
throw a com.sun.star.lang.DisposedException if you cannot fulfill the method specifica-
tion.

That way the owner of XComponent objects can dissolve a possible cyclic reference.

4.4.6 XInitialization

The interface com.sun.star.lang.XInitialization is usually implemented manually, because
only the programmer knows how to initialize the object with arguments received from the service
manager through createInstanceWithArguments () Or createInstanceWithArgumentsAndCon-
text () .InJava, XInitialization is used as well, but know that the Java factory helper provides
a shortcut that uses arguments without implementing XInitialization directly. The Java factory
helper can pass arguments to the class constructor under certain conditions. Refer to the section

241

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

242

4.5.7 Writing UNO Components - Simple Component in Java - Create Instance With Arguments for more
information.

The specification for XInitialization looks like this:
// module com::sun::star::lang

interface XInitialization : com::sun::star::uno::XInterface
{
void initialize (sequence< any > aArguments) raises (com::sun::star::uno::Exception);
}i
An old-style UNOIDL service specification will typically specify which arguments and in which
order are expected within the any sequence.

With the advent of new-style service specifications with explicit constructors, you can now declare
explicitly what arguments can be passed to an object when creating it. The arguments listed in a
constructor are exactly the arguments passed to xInitialization.initialize (the various
language bindings currently use xInitialization internally to implement service constructors;
that may change in the future, however).

4.4.7 XMain

The implementation of com.sun.star.lang.XMain is used for special cases. Its run () operation is
called by the uno executable. The section 4.10 Writing UNO Components - The UNO Executable below
discusses the use of XMain and the uno executable in detail.

// module com::sun::star::lang

interface XMain: com::sun::star::uno::XInterface
{
long run([in] sequence< string > aArguments) ;

}i

4.4.8 XAggregation

A concept called aggregation is commonly used to plug multiple objects together to form one single
object at runtime. The main interface in this context is com. sun.star.uno.xAggregation. After
plugging the objects together, the reference count and the queryInterface () method is delegated
from multiple slave objects to one master object.

It is a precondition that at the moment of aggregation, the slave object has a reference count of
exactly one, which is the reference count of the master. Additionally, it does not work on proxy
objects, because in Java, multiple proxy objects of the same interface of the same slave object might
exist.

While aggregation allows more code reuse than implementation inheritance, the facts mentioned
above, coupled with the implementation of independent objects makes programming prone to
errors. Therefore the use of this concept is discourage and not explained here. For further informa-
tion visit http://udk.openoffice.org/common/man/concept/unointro.html#aggregation .

4.4.9 XUnoTunnel

The com.sun.star.lang.XUnoTunnel interface allows access to the this pointer of an object. This
interface is used to cast a UNO interface that is coming back to its implementation class through a
UNO method. Using this interface is a result of an unsatisfactory interface design, because it indi-
cates that some functionality only works when non-UNO functions are used. In general, these

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XUnoTunnel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XUnoTunnel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XUnoTunnel.html
http://udk.openoffice.org/common/man/concept/unointro.html#aggregation
http://udk.openoffice.org/common/man/concept/unointro.html#aggregation
http://udk.openoffice.org/common/man/concept/unointro.html#aggregation
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAggregation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAggregation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XAggregation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html

objects cannot be replaced by a different implementation, because they undermine the general
UNO interface concept. This interface can be understood as admittance to an already existing code
that cannot be split into UNO components easily. If designing new services, do not use this inter-
face.

interface XUnoTunnel: com::sun::star::uno::XInterface
{

hyper getSomething([in] sequence< byte > aldentifier);
i
The byte sequence contains an identifier that both the caller and implementer must know. The
implementer returns the this pointer of the object if the byte sequence is equal to the byte
sequence previously stored in a static variable. The byte sequence is usually generated once per
process per implementation.

Note that the previously mentioned “per process’ is important because the this pointer of a class you know
is useless, if the instance lives in a different process.

4.5 Simple Component in Java

This section shows how to write Java components. The examples in this chapter are in the samples
folder that was provided with the programmer’s manual.

A Java component is a library of Java classes (a jar) containing objects that implement arbitrary
UNO services. For a service implementation in Java, implement the necessary UNO core interfaces
and the interfaces needed for your purpose. These could be existing interfaces or interfaces defined
by using UNOIDL.

Besides these service implementations, Java components need two methods to instantiate the
services they implement in a UNO environment: one to get single factories for each service imple-
mentation in the jar, and another one to write registration information into a registry database.
These methods are called static component operations in the following:

The method that provides single factories for the service implementations in a component is
__getServiceFactory():

public static XSingleServiceFactory _ getServiceFactory (String implName,

XMultiServiceFactory multiFactory,

XRegistryKey regKey)
In theory, a client obtains a single factory from a component by calling getServiceFactory ()
on the component implementation directly. This is rarely done because in most cases service
manager is used to get an instance of the service implementation. The service manager uses
__getServiceFactory () at the component to get a factory for the requested service from the
component, then asks this factory to create an instance of the one object the factory supports.

To find a requested service implementation, the service manager searches its registry database for
the location of the component jar that contains this implementation. For this purpose, the compo-
nent must have been registered beforehand. UNO components are able to write the necessary
information on their own through a function that performs the registration and which can be called
by the registration tool regcomp. The function has this signature:

public static boolean __ writeRegistryServiceInfo (XRegistryKey regKey)

These two methods work together to make the implementations in a component available to a
service manager. The method writeRegistryServicelInfo () tells the service manager where to
find an implementation while getServiceFactory () enables the service manager to instantiate
a service implementation, once found.

The necessary steps to write a component are:

243

Define service implementation classes.
Implement UNO core interfaces.

Implement your own interfaces.

W

Provide static component operations to make your component available to a service manager.

4.5.1 Class Definition with Helper Classes

XInterface, XTypeProvider and XWeak

The OpenOffice.org Java UNO environment contains Java helper classes that implement the
majority of the core interfaces that are implemented by UNO components. There are two helper
classes:

- The helper com.sun.star.lib.uno.helper.WeakBase is the minimal base class and implements
XInterface, XTypeProvider and Xweak.

- The helper com.sun.star.lib.uno.helper.ComponentBase that extends WeakBase and implements
XComponent.

The com.sun.star.lang.XServicelnfo is the only interface that should be implemented, but it is
not part of the helpers.

Use the naming conventions described in section 4.4.3 Writing UNO Components - Core Interfaces to
Implement - XServicelnfo for the service implementation. Following the rules, a service org. openof-
fice.test.ImageShrink should be implemented in org.openoffice. comp .test.ImageShrink.
A possible class definition that uses WweakBase could look like this:
(Components/Thumbs/org/openoffice /comp /test/ImageShrink.java)
package org.openoffice.comp.test;
public class ImageShrink extends com.sun.star.lib.uno.helper.WeakBase
implements com.sun.star.lang.XServicelInfo,
org.openoffice.test.XImageShrinkFilter ({
com.sun.star.uno.XComponentContext xComponentContext = null;
/** Creates a new instance of ImageShrink */
public ImageShrink (com.sun.star.uno.XComponentContext XComponentContext xContext) {

this.xComponentContext = xContext;

}

XServicelnfo

If the implementation only supports one service, use the following code to implement XServi-
celnfo: (Components/Thumbs/org/openoffice/comp/test/ImageShrink.java)

//XServiceInfo implementation

// hold the service name in a private static member variable of the class
protected static final String _ serviceName = "org.openoffice.test.ImageShrink";

public String getImplementationName() {
return getClass () .getName () ;

}

public boolean supportsService (String serviceName) {

244 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html

if (serviceName.equals(_ serviceName))
return true;
return false;

}

public String[] getSupportedServiceNames() {
return new String[] { _ serviceName };

}

An implementation of more than one service in one UNO object is more complex. It has to return
all supported service names in getSupportedServiceNames (), furthermore it must check all
supported service names in supportsService (). Note that several services packaged in one
component file are not discussed here, but objects supporting more than one service. Refer to 4.1 :
A Component implementing three UNO objects for the implementation of srv3_4.

4.5.2 Implementing your own Interfaces

The functionality of a component is accessible only by its interfaces. When writing a component,
choose one of the available API interfaces or define an interface. UNO types are used as method
arguments to other UNO objects. Java does not support unsigned integer types, so their use is
discouraged. In the chapter 4.2 Writing UNO Components - Using UNOIDL to Specify new Compo-
nents, the org.openoffice.test.XImageShrinkFilter interface specification was written and an
interface class file was created. Its implementation is straightforward, you create a class that imple-
ments your interfaces: (Components/Thumbs/org/openoffice/comp/test/ImageShrink.java)

package org.openoffice.comp.test;

public class ImageShrink extends com.sun.star.lib.uno.helper.WeakBase
implements com.sun.star.lang.XServicelInfo,
org.openoffice.test.XImageShrinkFilter ({

String destDir = "";

String sourceDir = "";

boolean cancel = false;

com.sun.star.awt.Size dimension = new com.sun.star.awt.Size();

// XImageShrink implementation (a sub-interface of XImageShrinkFilter)

public void cancel () {
cancel = true;

public boolean filter (com.sun.star.beans.PropertyValue[] propertyValue) {
// while cancel = false,
// scale images found in sourceDir according to dimension and
// write them to destDir, using the image file format given in
// [lpropertyValue
// (implementation omitted)
cancel = false;
return true;

}
// XIMageShrink implementation

public String getDestinationDirectory () {
return destDir;

}

public com.sun.star.awt.Size getDimension () {
return dimension;

}

public String getSourceDirectory () {
return sourceDir;

}

public void setDestinationDirectory (String str) ({
destDir = str;

}

public void setDimension(com.sun.star.awt.Size size) {

245

246

dimension = size;

}

public void setSourceDirectory (String str) {
sourceDir = str;

}

}

For the component to run, the new interface class file must be accessible to the Java Virtual
Machine. Unlike stand-alone Java applications, it is not sufficient to set the CLASSPATH environ-
ment variable. Instead, the class path is passed to the VM when it is created. Prior to
OpenOffice.orgl.1.0, one could modify the class path by editing the systemClasspath entry of the
java(.ini | rc) which was located in the folder <officepath>\user\config. Another way was to use the
Options dialog. To navigate to the class path settings, one had to expand the OpenOffice.org node
in the tree on the left-hand side and chose Security . On the right-hand side, there was a field
called User Classpath.

As of OpenOffice.orgl.1.0 the component , class files, and type library are packed into a extension,
which is then registered by the pkgchk executable. And as of OpenOffice.orgl.2.0, the unopkg tool
is used to to thi s. The jar files are then automatically added to the class path.

It is also important that the binary type library of the new interfaces are provided together with the compo-
nent, otherwise the component is not accessible from OpenOffice.org Basic. Basic uses the UNO core reflec-
tion service to get type information at runtime. The core reflection is based on the binary type library.

4.5.3 Providing a Single Factory Using Helper Method

The component must be able to create single factories for each service implementation it contains
and return them in the static component operation getServiceFactory (). The OpenOffice.org
Java UNO environment provides a Java class com.sun.star.comp.loader.FactoryHelper that
creates a default implementation of a single factory through its method getServiceFactory () .
The following example could be written:

(Components/Thumbs/org/openoffice /comp /test/ImageShrink.java)

package org.openoffice.comp.test;

import com.sun.star.lang.XSingleServiceFactory;
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.registry.XRegistryKey;

import com.sun.star.comp.loader.FactoryHelper;

public class ImageShrink ... {

// static getServiceFactory() implementation
// static member _ serviceName was introduced above for XServiceInfo implementation
public static XSingleServiceFactory _ getServiceFactory (String implName,
XMultiServiceFactory multiFactory,
com.sun.star.registry.XRegistryKey regKey) {

com.sun.star.lang.XSingleServiceFactory xSingleServiceFactory = null;
if (implName.equals(ImageShrink.class.getName()))
xSingleServiceFactory = FactoryHelper.getServiceFactory (ImageShrink.class,
ImageShrink. serviceName, multiFactory, regKey);

return xSingleServiceFactory;

}

The FactoryHelper is contained in the jurt jar file. The getServiceFactory () method takes as a
first argument a Class object. When createInstance () is called on the default factory, it creates
an instance of that Class using newInstance () on it and retrieves the implementation name

OpenOffice.org 2.3 Developer's Guide « June 2007

through getName (). The second argument is the service name. The multiFactory and regkey
arguments were received in __getServiceFactory () and are passed to the FactoryHelper.

In this case, the implementation name, which the default factory finds through Class.getName () is
org.openoffice.comp.test.ImageShrink and the service name is org.openoffice.test.Image-
Shrink. The implementation name and the service name are used for the separate XServicelnfo implemen-
tation within the default factory. Not only do you support the XServicelnfo interface in your service imple-
mentation, but the single factory must implement this interface as well.

The default factory created by the FactoryHelper expects a public constructor in the implementa-
tion class of the service and calls it when it instantiates the service implementation. The constructor
can be a default constructor, or it can take a com.sun.star.uno.XComponentContext Or a
com.sun.star.lang.XMultiServiceFactory as an argument. Refer to 4.5.7 Writing UNO Compo-
nents - Simple Component in Java - Create Instance With Arguments for other arguments that are
possible.

Java components are housed in jar files. When a component has been registered, the registry
contains the name of the jar file, so that the service manager can find it. However, because a jar file
can contain several class files, the service manager must be told which one contains the
__getServiceFactory () method. That information has to be put into the jar’s Manifest file, for
example:

RegistrationClassName: org.openoffice.comp.test.ImageShrink

4.5.4 Write Registration Info Using Helper Method

UNO components have to be registered with the registry database of a service manager. In an
office installation, this is the file types.rdb (up through 1.1.0, applicat.rdb) for all predefined services.
A service manager can use this database to find the implementations for a service. For instance, if
an instance of your component is created using the following call.

Object imageShrink = xRemoteServiceManager.createInstance ("org.openoffice.test.ImageShrink");

Using the given service or implementation name, the service manager looks up the location of the
corresponding jar file in the registry and instantiates the component.

If you want to use the service manager of the Java UNO runtime,
com.sun.star.comp.servicemanager.ServiceManager (jurt.jar), to instantiate your service implementation,
then you would have to create the service manager and add the factory for org.openoffice.test.Image-
Shrink programmatically, because the Java service manager does not use the registry.

Alternatively, you can use com.sun.star.comp.helper.RegistryServiceFactory from juh.jar which is registry-
based. Its drawback is that it delegates to a C++ implementation of the service manager through the java-
bridge.

During the registration, a component writes the necessary information into the registry. The
process to write the information is triggered externally when a client calls the
__ writeRegistryServiceInfo () method at the component.

public static boolean _ writeRegistryServiceInfo (XRegistryKey regKey)
The caller passes an com.sun.star.registry.XRegistryKey interface that is used by the method

to write the registry entries. Again, the FactoryHelper class offers a way to implement the method:
(Components/Thumbs/org/openoffice /comp/test/ImageShrink.java)

// static writeRegistryServiceInfo implementation
public static boolean __ writeRegistryServicelInfo (XRegistryKey regKey) {

return FactoryHelper.writeRegistryServiceInfo(ImageShrink.class.getName (),
__serviceName, regKey);

247

http://api.openoffice.org/docs/common/ref/com/sun/star/registry/XRegistryKey.html
http://api.openoffice.org/docs/common/ref/com/sun/star/registry/XRegistryKey.html
http://api.openoffice.org/docs/common/ref/com/sun/star/registry/XRegistryKey.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

248

}
The writeRegistryServicelnfo method takes three arguments:
implementation name
service name
XRegistryKey

Use tools, such as regcomp or the Java application com.sun.star.tools.uno.RegComp to register a
component. These tools take the path to the jar file containing the component as an argument.
Since the jar can contain several classes, the class that implements the
__writeRegistryServiceInfo () method must be pointed out by means of the manifest. Again,
the RegistrationClassName entry determines the correct class. For example:

RegistrationClassName: org.openoffice.comp.test.ImageShrink
The above entry is also necessary to locate the class that provides getServiceFactory(), there-

fore the functions writeRegistryServiceInfo() and getServiceFactory () have tobein
the same class.

4.5.5 Implementing without Helpers

XlInterface

As soon as the component implements any UNO interface, com.sun.star.uno.XInterface is
included automatically. The Java interface definition generated by javamaker for
com.sun.star.uno.XInterface only contains a TypeInfo member used by Java UNO internally
to store certain UNO type information:

// source file com/sun/star/uno/XInterface.java gcorresponding to the class generated by
package com.sun.star.uno;

public interface XInterface

{
// static Member
public static final com.sun.star.lib.uno.typeinfo.TypeInfo UNOTYPEINFO[] = null;
}
Note that XInterface does not have any methods, in contrast to its IDL description. That means, if
implements com.sun.star.uno.XInterface isadded to a class definition, there is nothing to

implement.

The method queryInterface () is unnecessary in the implementation of a UNO object, because
the Java UNO runtime environment obtains interface references without support from the UNO
objects themselves. Within Java, the method UnoRuntime.queryInterface () is used to obtain
interfaces instead of calling com. sun.star.uno.XInterface:queryInterface (), and the Java
UNO language binding hands out interfaces for UNO objects to other processes on its own as well.

The methods acquire () and release () are used for reference counting and control the lifetime of
an object, because the Java garbage collector does this, there is no reference counting in Java
components.

XTypeProvider

Helper classes with default com.sun.star.lang.XTypeProvider implementations are still under
development for Java. Meanwhile, every Java UNO object implementation can implement the

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html#queryInterface
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

XTypeProvider interface as shown in the following code. In your implementation, adjust
getTypes () : (Components/Thumbs/org/openoffice/comp/test/ImageShrink java)

// XTypeProvider implementation

// maintain a static implementation id for all instances of ImageShrink
// initialized by the first call to getImplementationId()
protected static byte[] _implementationId;

public com.sun.star.uno.Type[] getTypes() {

// instantiate Type instances for each interface you support and place them in a Type[] array
// (this object supports XServiceInfo, XTypeProvider, and XImageShrinkFilter)
return new com.sun.star.uno.Type[] {

new com.sun.star.uno.Type (com.sun.star.lang.XServiceInfo.class),

new com.sun.star.uno.Type (com.sun.star.lang.XTypeProvider.class),

new com.sun.star.uno.Type (org.openoffice.test.XImageShrinkFilter.class) };

}

synchronized public byte[] getImplementationId() {

if (_implementationId == null) {
_implementationId= new byte[16];
int hash = hashCode(); // hashCode of this object
_implementationId[0] = (byte) (hash & O0xff);
_implementationId[1l] = (byte) ((hash >>> 8) & 0xff);
_implementationId[2] = (byte) ((hash >>> 16) & 0xff);
_implementationId[3] = (byte) ((hash >>>24) & O0xff);

}

return _implementationId;

The suggested implementation of the get ImplementationId () method is not optimal, it uses the
hashCode () of the first instance that initializes the static field. The future UNO helper class will
improve this.

XComponent

XComponent is an optional interface that is useful when other objects hold references to the compo-
nent. The notification mechanism of xComponent enables listener objects to learn when the compo-
nent stops to provide its services, so that the objects drop their references to the component. This
enables the component to delete itself when its reference count drops to zero. From section 4.4
Writing UNO Components - Core Interfaces to Implement, there must be three things done when
dispose () is called at an XComponent:

- Inform registered xEventListener s that the object is being disposed of by calling their method
disposing().

- Release all references the object holds, including all xEvenListener objects.

- On further calls to the component, throw an com.sun.star.lang.DisposedException in case
the required task can not be fulfilled anymore, because the component was disposed.

In Java, the object cannot be deleted, but the garbage collector will do this. It is sufficient to release
all references that are currently being held to break the cyclic reference, and to call disposing ()
onall com.sun.star.lang.XEventListeners.

The registration and removal of listener interfaces is a standard procedure in Java. Some IDEs even
create the necessary methods automatically. The following example could be written: (Compo-
nents/Thumbs/org/openoffice/comp/test/ImageShrink.java)

//XComponent implementation

// hold a list of eventListeners
private java.util.ArraylList eventListeners = new java.util.ArrayList();

249

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XEventListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/DisposedException.html

250

public void dispose {

java.util.ArrayList listeners;

synchronized (this) {
listeners = eventListeners;
eventListeners = null;

}

for (java.util.Iterator i = listeners.iterator(); i.hasNext();) {
fireDisposing ((XEventListener) i.next());

}

releaseReferences () ;

}

public void addEventListener (XEventListener listener) ({
bool fire = false;
synchronized (this) {

if (eventListeners == null) {
fire = true;
} else {

eventListeners.add(listener);

}

}
if (fire) {
fireDisposing(listener) ;
}
}

public synchronized void removeEventListener (XEventListener listener) {
if (eventListeners != null) {
int i = eventListeners.indexOf (listener);
if (i >= 0) {
eventListeners.remove (i) ;

}
}

private void fireDisposing(XEventListener listener) {
com.sun.star.uno.EventObject event = new com.sun.star.uno.EventObject (this);
try {
listener.disposing (event) ;
} catch (com.sun.star.uno.DisposedException e) {
// it is not an error if some listener is disposed simultaneously

}
}

private void releaseReferences () {
xComponentContext = null;

//

4.5.6 Storing the Service Manager for Further Use

A component usually runs in the office process. There is no need to create an interprocess channel
explicitly. A component does not have to create a service manager, because it is provided to the
single factory of an implementation by the service manager during a call to createInstance () or
createInstanceWithContext (). The Single factory receives an XComponentContext Oor an XMul-
tiServiceFactory, and passes it to the corresponding constructor of the service implementation.
From the component context, the implementation gets the service manager using getServiceMan-
ager () atthe com.sun.star.uno.XComponentContext interface.

4.5.7 Create Instance with Arguments

A factory can create an instance of components and pass additional arguments. To do that, a client
calls the createInstanceWithArguments () function of the com.sun.star.lang.XSingleSer-
viceFactory interface or the createInstanceWithArgumentsAndContext () of the
com.sun.star.lang.XSingleComponentFactory interface.

//javamaker generated interface

//XSingleServiceFactory interface

public java.lang.Object createInstanceWithArguments (java.lang.Object[] aArguments)
throws com.sun.star.uno.Exception;

//XSingleComponentFactory

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

public java.lang.Object createlInstanceWithArgumentsAndContext (java.lang.Object[] Arguments,
com.sun.star.uno.XComponentContext Context)
throws com.sun.star.uno.Exception;
Both functions take an array of values as an argument. A component implements the
com.sun.star.lang.XInitialization interface to receive the values. A factory passes the array
on to the single method initialize () supported by XInitialization.

public void initialize(java.lang.Object[] aArguments) throws com.sun.star.uno.Exception;

Alternatively, a component may also receive these arguments in its constructor. If a factory is
written, determine exactly which arguments are provided by the factory when it instantiates the
component. When using the FactoryHelper, implement the constructors with the following argu-
ments:

First Argument Second Argument Third Argument

com.sun.star.uno.XComponentContext | com.sun.star.registry. XRegistryKey java.lang.Object[]

com.sun.star.uno.XComponentContext com.sun.star.registry. XRegistryKey
com.sun.star.uno.XComponentContext | java.lang.Object[]
com.sun.star.uno.XComponentContext

java.lang.Object[]

The FactoryHelper automatically passes the array of arguments it received from the createIn-
stanceWithArguments [AndContext] () call to the appropriate constructor. Therefore, it is not
always necessary to implement XInitialization to use arguments.

4.5.8 Possible Structures for Java Components

The implementation of a component depends on the needs of the implementer. The following
examples show some possible ways to assemble a component. There can be one implemented
object or several implemented objects per component file.

One Implementation per Component File
There are additional options if implementing one service per component file:

Use a flat structure with the static component operations added to the service implementation
class directly.

Reserve the class with the implementation name for the static component operation and use an
inner class to implement the service.

Implementation Class with Component Operations

An implementation class contains the static component operations. The following sample imple-
ments an interface com. sun.star.test.XSomething in an implementation class
JavaComp.TestComponent:

// UNOIDL: interface example specification
module com { module sun { module star { module test {

interface XSomething: com::sun::star::uno::XInterface

{

string methodOne ([in]string wval) ;
}i
Yiobio i b

251

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html

252

A component that implements only one service supporting xSomething can be assembled in one
class as follows:

package JavaComp;

public class TestComponent implements XSomething, XTypeProvider, XServiceInfo ({
public static final String __serviceName="com.sun.star.test.JavaTestComponent";

public static XSingleServiceFactory getServiceFactory(String implName,
XMultiServiceFactory multiFactory, XRegistryKey regKey) {
XSingleServiceFactory xSingleServiceFactory = null;

if (implName.equals(TestComponent.class.getName()))
xSingleServiceFactory = FactoryHelper.getServiceFactory(TestComponent.class,
TestComponent._ serviceName, multiFactory, regKey);
return xSingleServiceFactory;

}

public static boolean _ writeRegistryServicelInfo (XRegistryKey regKey) {
return FactoryHelper.writeRegistryServiceInfo(TestComponent.class.getName ()
TestComponent._ serviceName, regKey);

}

// XSomething
string methodOne (String val) {
return val;

}
//XTypeProvider
public com.sun.star.uno.Type[] getTypes() {

}
// XTypeProvider
public byte[] getImplementationId() {

}
//XServiceInfo
public String getImplementationName () {

}
// XServiceInfo
public boolean supportsService(/*IN*/String serviceName) {

}
//XServicelInfo
public String[] getSupportedServiceNames() {

}
}
The class implements the XSomething interface. The IDL description and documentation provides
information about its functionality. The class also contains the functions for factory creation and
registration, therefore the manifest entry must read as follows:

RegistrationClassName: JavaComp.TestComponent

Implementation Class with Component Operations and Inner Implementation Class

To implement the component as inner class of the one that provides the service factory through
__getServiceFactory (),it must be a static inner class, otherwise the factory provided by the
FactoryHelper cannot create the component. An example for an inner implementation class is
located in the sample com.sun.star.comp.demo.DemoComponent.java provided with the SDK. The
implementation of getServiceFactory() and writeRegistryServicelInfo () is omitted
here, because they act the same as in the implementation class with component operations above.
package com.sun.star.comp.demo;
public class DemoComponent {

}}.static inner class implements service com.sun.star.demo.DemoComponent

static public class _Implementation implements XTypeProvider,

XServiceInfo, XInitialization, XWindowListener,

XActionListener, XTopWindowListener ({

static private final String _ serviceName = "com.sun.star.demo.DemoComponent";
private XMultiServiceFactory xMultiServiceFactory;

OpenOffice.org 2.3 Developer's Guide « June 2007

// Constructor
public Implementation (XMultiServiceFactory xMultiServiceFactory) {
}

}

// static method to get a single factory creating the given service from the factory helper
public static XSingleServiceFactory _ getServiceFactory(String implName,
XMultiServiceFactory multiFactory,
XRegistryKey regKey) {

}

// static method to write the service information into the given registry key
public static boolean _ writeRegistryServiceInfo (XRegistryKey regKey) {

}
}
The manifest entry for this implementation structure again has to point to the class with the static
component operations:

RegistrationClassName: com.sun.star.comp.demo.DemoComponent

Multiple Implementations per Component File

To assemble several service implementations in one component file, implement each service in its
own class and add a separate class containing the static component operations. The following code
sample features two services: TestComponenta and TestComponentB implementing the interfaces
XSomethinga and xSomethingB with a separate static class TestServiceProvider containing the
component operations.

The following are the UNOIDL specifications for XSomethinga and xSomethingB:

module com { module sun { module star { module test {
interface XSomethingA: com::sun::star::uno::XInterface
{

string methodOne ([in]string value);
bi
[N N A

module com { module sun { module star { module test {
interface XSomethingB: com::sun::star::uno::XInterface
{

string methodTwo ([in]string value) ;
} Yiodiobs
TestComponentA implements XSomethingA:
(Components/JavaComponent/TestComponentA java):
package JavaComp;

public class TestComponentA implements XTypeProvider, XServiceInfo, XSomethingA {
static final String __ serviceName= "JavaTestComponentA";

static byte[] implementationId;

public TestComponentA() {
}

// XSomethingA
public String methodOne (String wval) {
return val;

}

//XTypeProvider

public com.sun.star.uno.Type[] getTypes() {
Type[] retValue= new Type[3];
retValue[0]= new Type(XServicelInfo.class);
retValue[l]= new Type(XTypeProvider.class) ;

retValue[2]= new Type (XSomethingA.class) ;
return retValue;

}

//XTypeProvider
synchronized public byte[] getImplementationId() {

253

if (_implementationId == null) {
_implementationId= new byte[16];
int hash = hashCode () ;

_implementationId[0] (byte) (hash & O0xff);
implementationId([1l] = (byte) ((hash >>> 8) & O0xff);
:implementationld[2] = (byte) ((hash >>> 16) & 0xff);
_implementationId[3] = (byte) ((hash >>>24) & O0xff);
}
return implementationId;
}
//XServicelInfo
public String getImplementationName() {
return getClass () .getName () ;
}
// XServicelInfo
public boolean supportsService(/*IN*/String serviceName) {
if (serviceName.equals(_ serviceName))
return true;
return false;
}
//XServiceInfo
public String[] getSupportedServiceNames() {
String[] retValue= new String[0];
retValue[0]= _ serviceName;

return retValue;

TestComponentB implements XSomethingB. Note that it receives the component context and
initialization arguments in its constructor. (Components/JavaComponent/TestComponentB.java)

package JavaComp;

public class TestComponentB implements XTypeProvider, XServiceInfo, XSomethingB {
static final String __ serviceName= "JavaTestComponentB";

static byte[] implementationId;
private XComponentContext context;
private Object[] args;

public TestComponentB (XComponentContext context, Object[] args) {
this.context= context;
this.args= args;

}

// XSomethingB
public String methodTwo (String val) {
if (args.length > 0 && args[0] instanceof String)
return (String) args[0];
return val;

}

//XTypeProvider

public com.sun.star.uno.Type[] getTypes() {
Type[] retValue= new Type[3];
retValue[0]= new Type(XServicelnfo.class);
retValue[l]= new Type(XTypeProvider.class);
retValue[2]= new Type(XSomethingB.class) ;
return retValue;

}

//XTypeProvider
synchronized public byte[] getImplementationId() {
if (_implementationId == null) {

_implementationId= new byte[16];
int hash = hashCode();

_implementationId[O0] (byte) (hash & O0xff);
_implementationId[1l] = (byte) ((hash >>> 8) & 0xff);
_implementationId[2] = (byte) ((hash >>> 16) & O0xff);
_implementationId[3] = (byte) ((hash >>>24) & Oxff);
}
return implementationId;
}
//XServiceInfo
public String getImplementationName() {
return getClass () .getName () ;
}
// XServicelInfo
public boolean supportsService(/*IN*/String serviceName) {
if (serviceName.equals(__ serviceName))

return true;

254 OpenOffice.org 2.3 Developer's Guide « June 2007

return false;

}

//XServiceInfo

public String[] getSupportedServiceNames() {
String[] retValue= new String[0];
retValue[0]= _ serviceName;
return retValue;

TestServiceProvider implements getServiceFactory() and
__writeRegistryServiceInfo ():(Components/JavaComponent/TestServiceProvider.java)

package JavaComp;

public class TestServiceProvider
{
public static XSingleServiceFactory _ getServiceFactory (String implName,
XMultiServiceFactory multiFactory,
XRegistryKey regKey) {
XSingleServiceFactory xSingleServiceFactory = null;

if (implName.equals(TestComponentA.class.getName ()))
xSingleServiceFactory = FactoryHelper.getServiceFactory(TestComponentA.class,
TestComponentA. serviceName, multiFactory, regKey);
else if (implName.equals (TestComponentB.class.getName ()))
xSingleServiceFactory= FactoryHelper.getServiceFactory(TestComponentB.class,
TestComponentB. serviceName, multiFactory, regKey);
return xSingleServiceFactory;

}

public static boolean __ writeRegistryServicelInfo (XRegistryKey regKey) {
boolean bregA= FactoryHelper.writeRegistryServiceInfo(TestComponentA.class.getName (),
TestComponentA. serviceName, regKey);
boolean bregB= FactoryHelper.writeRegistryServiceInfo(TestComponentB.class.getName (),
TestComponentB. serviceName, regKey);
return bregA && bregB;

}

The corresponding manifest entry must point to the static class with the component operations, in
this case JavaComp.TestServiceProvider:

RegistrationClassName: JavaComp.TestServiceProvider

4.5.9 Running and Debugging Java Components

In order to run a Java component within an office, it needs to be registered first. During the process
of registration, the location of the component, its service name and implementation name, are
written into a registry database the services.rdb.

As of OpenOffice.orgl.1.0 the registration database (applicat.rdb) was split into the services.rdb and the
types.rdb. As the names suggest, the services.rdb contains information about services (location, names, ect),
whereas the types.rdb holds type descriptions (interfaces, enumerations, etc.)

Formerly the regcomp tool was used for registering components. However, it was superseded by
pkgchk which came with OpenOffice.org1.1.0 and later by unopkg which came with OpenOffice.orgl.2.0 .
For more details about unopkg refer to chapter 5 Extensions.

By using regcomp you have the option of registering components so that the information is kept in a
separate database (other then the services.rdb). This might come in handy if you do not want to
clutter up the services.rdb while developing components. Then, however, the office needs to be
told to use that .rdb, which is done by modifying the uno(.inil rc).

If the component uses new types, then they must be made available to the office by merging the
type information into the services.rdb. Again, you have the option of using a different database as
long as the uno.(inilrc) is modified accordingly. This step can be omitted if unopkg is being used.

255

256

The following is a step by step description of the registration process using regcomp:

Note, if errors are encountered, refer to the troubleshooting section at the end of this chapter.

Register Component File

This step creates a registry file that contains the location of the component file and all the neces-
sary type information. To register, place a few files to the proper locations:

Copy the regcomp tool from the SDK distribution to <OfficePath>/program.
Copy the component jar to <OfficePath>/program/classes.

Copy the .rdb file containing the new types created to <OfficePath>/program. If new types
were not defined, dismiss this step. In this case, regcomp automatically creates a new rdb file
with registration information.

On the command prompt, change to <OfficePath>/program, then run regcomp with the following
options. Line breaks were applied to improve readability, but the command must be entered in
a single line:

$ regcomp -register -r <your registry>.rdb
-br services.rdb
-br types.rdb
-1 com.sun.star.loader.Java
-c file:///<OfficePath>/program/classes/<your component>.jar

For the org.openoffice.test.ImageShrink service whose type description was merged into
thumbs.rdb , which is implemented in thumbs.jar, the corresponding command would be:

$ regcomp -register -r thumbs.rdb
-br services.rdb
-br types.rdb
-1 com.sun.star.loader.Java
-c file:///i:/StarOffice6.0/program/classes/thumbs.jar

Instead of regcomp, there is also a Java tool to register components, however, it can only write to
the same registry it reads from. It cannot be used to create a separate registry database. For
details, see the section 4.9 Writing UNO Components - Deployment Options for Components.

Make Registration available to OpenOffice.org

OpenOffice.org must be told to use the registry. Close all OpenOffice.org parts, including the
Quickstarter that runs in the Windows task bar. Edit the file uno(.ini | rc) in <OfficePath>/program
as follows:

[Bootstrap]

UNO_TYPES=$SYSBINDIR/types.rdb $SYSBINDIR/<your registry>.rdb
UNO_ SERVICES=$SYSBINDIR/services.rdb $SYSBINDIR/<your registry>.rdb

For details about the syntax of uno(.ini| rc) and alternative registration procedures, refer to the
section 4.9 Writing UNO Components - Deployment Options for Components. If OpenOffice.org is
restarted, the component should be available.

Test the Registration

A short OpenOffice.org Basic program indicates if the program runs went smoothly, by
selecting Tools Macro and entering a new macro name on the left, such as TestImageShrink
and click New to create a new procedure. In the procedure, enter the appropriate code of the
component. The test routine for ImageShrink would be:
Sub TestImageShrink

oTestComp = createUnoService ("org.openoffice.test.ImageShrink"

MsgBox oTestComp.dbg methods

MsgBox oTestComp.dbg properties

MsgBox oTestComp.dbg supportedInterfaces
end sub

The result should be three dialogs showing the methods, properties and interfaces supported
by the implementation. Note that the interface attributes do not appear as get/set methods, but
as properties in Basic. If the dialogs do not show what is expected, refer to the section 4.5.9

OpenOffice.org 2.3 Developer's Guide « June 2007

Writing UNO Components - Simple Component in Java - Testing and Debugging Java Components -
Troubleshooting.

Debugging

To increase turnaround cycles and source level debugging, configure the IDE to use GNU make-
files for code generation and prepare OpenOffice.org for Java debugging. If NetBeans are used, the
following steps are necessary:

Support for GNU make
A NetBeans extension, available on makefile.netbeans.org, that addsbasic support for GNU make-
files. When it is enabled, edit the makefile in the IDE and use the makefile to build. To install
and enable this module, select Tools Setup Wizard and click Next to go to the Module instal-
lation page. Find the module Makefiles and change the corresponding entry to True in the
Enabled column. Finish using the setup wizard. If the module is not available in the installa-
tion, use Tools Update Center to get the module from www.netbeans.org. A new entry, Make-
file Support, appears in the online help when Help Contents is selected. Makefile Support
provides further configuration options. The settings Run a Makefile and Test a Makefile can
be found in Tools Options Uncategorized Compiler Types and Execution Types.

Put the makefile into the project source folder that was mounted when the project was created.
To build the project using the makefile, highlight the makefile in the Explorer and press F11.

Documentation for GNU make command-line options and syntax are available at www.gnu.org.
The sample Thumbs in the samples folder along with this manual contains a makefile that with a
few adjustments is useful for Java components.

Component Debugging
If NetBeans or Forte for Java is used, the Java Virtual Machine (JVM) that is launched by
OpenOffice.org can be attached. Configure the JVM used by OpenOffice.org to listen for
debugger connections. Prior to OpenOffice.org?2.0 this was done by adding these lines to the
java(.inilrc) in <OfficePath>/user/config:

-Xdebug
-Xrunjdwp:transport=dt_socket, server=y, address=8000, suspend=n

As of OpenOffice.org?2.0, these lines are added in the options dialog: expand the OpenOffice.org
node in the tree on the left-hand side and chose Java . On the right-hand side, push the Parame-
ters button to open a dialog. In this dialog, enter the debug options as two separate entries.
Note that the parameters have to entered the same way as they would be provided on the
command line when starting the Java executable. That is, retain the leading -’ and spaces, if
necessary.

The additional entries correspond exactly to the options you would use when running the java executable
from the command line in debug mode. For more information refer to the Java SDK documentation.

The last line causes the JVM to listen for a debugger on port 8000. The JVM starts listening as soon
as it runs and does not wait until a debugger connects to the JVM. Launch the office and instantiate
the Java component, so that the office invokes the JVM in listening mode.

Once a Java component is instantiated, the JVM keeps listening even if the component goes out of
scope. Open the appropriate source file in the NetBeans editor and set breakpoints as needed.
Choose Debug - Attach, select Java Platform Debugger Architecture (JPDA) as debugger type
and SocketAttach (Attaches by socket to other VMs) as the connector. The Host should be local-
host and the Port must be 8000. Click OK to connect the Java Debugger to the JVM the office has
started previously step.

257

258

Once the debugger connects to the running JVM, NetBeans switches to debug mode, the output
windows shows a message that a connection on port 8000 is established and threads are visible, as
if the debugging was local. If necessary, start your component once again. As soon as the compo-
nent reaches a breakpoint in the source code, the source editor window opens with the breakpoint
highlighted by a green arrow.

The Java Environment in OpenOffice.org

When UNO components written in Java are to be used within the office, the office has to be config-
ured appropriately. Prior to OpenOffice.org2.0, this configuration happened during the installa-
tion, when the Java setup was performed. Then, a user could choose a Java Runtime Environment
or choose to install a JRE. After installing the office, the selected JRE could still be changed with the
jomsetup program, which was located in the program folder. The data for running the Java Virtual
Machine was stored in the java(.ini | rc) file and other configuration files.

The java(.ini| rc) actually is an implementation detail. Unfortunately, it needs to be modified under some rare
circumstances, for example for debugging purposes. You must not rely on the existence of the file nor should
you make assumptions about its contents.

In an office with a lower version than 2.0, the java(.ini | rc) is located in the <officepath>\user\config
directory. A client can use that file to pass additional properties to the Java Virtual Machine, which
are then available as system properties. For example, to pass the property MyAge, invoke Java like
this:

java -DMyAge=30 RunClass

If you want to have that system property accessible by your Java component you can put that
property into java(ini | rc) within the [Java] section. For example:

[Java]
Home=file:///C:/Program%20Files/Java/j2rel.4.2

VMType=JRE
Version=1.4.2
RuntimeLib=file:///C:/Program$%20Files/Java/j2rel.4.2/bin/client/jvm.dll

Java=1
JavaScript=1
Applets=1
MyAge=27
To debug a Java component, it is necessary to start the JVM with additional parameters. The
parameters can be put in the java.ini the same way as they would appear on the command-line. For

example , add those lines to the [Java] section:

-Xdebug

-Xrunjdwp:transport=dt socket, server=y, address=8000

More about debugging can be found in the JDK documentation and in the OpenOffice.org Soft-
ware Development Kit.

Java components are also affected by the following configuration settings. They can be changed in
the Tools - Options dialog. In the dialog, expand the OpenOffice.org node on the left-hand side
and choose Security. This brings up a new pane on the right-hand side that allows Java specific
settings:

Java Setting Description

Enable If checked, Java is used with the office. This affects Java components, as well as
applets.

Security checks If checked, the security manager restricts resource access of applets.

Net access Determines where an applet can connect.

OpenOffice.org 2.3 Developer's Guide « June 2007

Java Setting Description

ClassPath Additional jar files and directories where the JVM should search for classes. Also
known as user classpath.

Applets If checked, applets are executed.

In OpenOffice.org2.0 there is no java(.ini | rc) anymore. All basic Java settings are set in the options

dialog: tree node OpenOffice.org->Java. The Parameters dialog can be used to specify the debug
options and other arguments.

For applets there are still a few settings on the security panel (tree node OpenOffice.org->Security).

Troubleshooting

If the component encounters problems, review the following checklist to check if the component is
configured correctly.

Check Registry Keys

To check if the registry database is correctly set up, run regview against the three keys that make
up a registration in the /UCR, /SERVICES and /IMPLEMENTATIONS branch of a registry
database. The following examples show how to read the appropriate keys and how a proper
configuration should look. In our example, service ImageShrink, and the

key /UCR/org/openoffice/test/XImageShrink contain the type information specified in
UNOIDL (the exact output from regview might differ between versions of OpenOffice.org):

dump XImageShrink type information
$ regview thumbs.rdb /UCR/org/openoffice/test/XImageShrink
Registry "file:///X:/office60eng/program/thumbs.rdb":

/UCR/org/openoffice/test/XImageShrink
Value: Type RG_VALUETYPE BINARY
Size 364
Data minor version: 0
major version: 1
type: 'interface'
uik: { 0x00000000-0x0000-0x0000-0x00000000-0x00000000 }
name: 'org/openoffice/test/XImageShrink'
super name: 'com/sun/star/uno/XInterface'
Doku: ""
IDL source file: "X:\SO\sdk\examples\java\Thumbs\org\openoffice\test\XImageShrink.idl"
number of fields: 3
field #0:
name="'SourceDirectory'
type='string'
access=READWRITE
Doku: ""
IDL source file: ""
field #1:
name="'DestinationDirectory'
type='string'
access=READWRITE
Doku: ""
IDL source file: ""
field #2:
name="'Dimension'
type='com/sun/star/awt/Size'
access=READWRITE
Doku: ""
IDL source file: ""
number of methods: 0
number of references: 0

The /SERVICES/ org.openoffice.test.ImageShrink key must point to the implementation name
org.openoffice. comp .test.ImageShrink that was chosen for this service:

dump service name registration

$ regview thumbs.rdb /SERVICES/org.openoffice.test.ImageShrink

259

Registry "file:///X:/office60eng/program/thumbs.rdb":

/SERVICES/org.openoffice.test.ImageShrink
Value: Type RG_VALUETYPE_STRINGLIST

Size = 45
Len =1
Data = 0 = "org.openoffice.comp.test.ImageShrink"

Finally, the /IMPLEMENTATIONS/ org.openoffice.comp.test. ImageShrink key must contain
the loader and the location of the component jar:

dump implementation name registration
$ regview thumbs.rdb /IMPLEMENTATIONS/org.openoffice.comp.test.ImageShrink
Registry "file:///X:/office60eng/program/thumbs.rdb":

/IMPLEMENTATIONS/org.openoffice.comp.test.ImageShrink
/ UNO
/ ACTIVATOR
Value: Type RG_VALUETYPE_STRING
2

6

"com.sun.star.loader.Java2"
/ SERVICES
/ org.openoffice.test.ImageShrink
/ LOCATION
Value: Type RG_VALUETYPE_STRING

50
"file:///X:/office60eng/program/classes/thumbs.jar"

If the UCR key is missing, the problem is with regmerge. The most probable cause are

missing .urd files. Be careful when writing the makefile. If .urd files are missing when regmerge
is launched by the makefile, regmerge continues and creates a barebone .rdb file, sometimes
without any type info.

Size
Data

If regview can not find the /SERVICES and /IMPLEMENTATIONS keys or they have the
wrong content, the problem occurred when regcomp was run. This can be caused by wrong path
names in the regcomp arguments.

Also, a wrong SystemClasspath setup in java(.inil rc) (prior to OpenOffice.org2.0) could be the
cause of regcomp error messages about missing classes. Check what the systemClasspath entry
in java(.ini | rc) specifies for the Java UNO runtime jars.

Ensure that regcomp is being run from the current directory when registering Java components.
In addition, ensure <OfficePath>/program is the current folder when regcomp is run. Verify that
regcomp is in the current folder.

Check the Java VM settings
Whenever the VM service is instantiated by OpenOffice.org, it uses the Java configuration
settings in OpenOffice.org. This happens during the registration of Java components, therefore
make sure that Java is enabled. Choose Tools-Options in OpenOffice.org, so that the dialog
appears. Expand the OpenOffice.org node and select Security. Select the Enable checkbox in
the Java section and click OK.

Check the Manifest
Make sure the manifest file contains the correct entry for the registration class name. The file
must contain the following line:

RegistrationClassName: <full name of package and class>

Please make sure that the manifest file ends up with a new line. The registration class name
must be the one that implements the writeRegistryServiceInfo() and
__getServiceFactory () methods. The RegistrationClassName to be entered in the manifest
for our example is org.openoffice.comp.test.ImageShrink.

Adjust CLASSPATH for Additional Classes
OpenOffice.org maintains its own system classpath and a user classpath when it starts the Java
VM for Java components. The jar file that contains the service implementation is not required in

260 OpenOffice.org 2.3 Developer's Guide « June 2007

the system or user classpath. If a component depends on jar files or classes that are not part of
the Java UNO runtime jars, then they must be put on the classpath. This can be achieved by
editing the classpath in the options dialog (Tools Options OpenOffice.org Security) .

Disable Debug Options
If the debug options (-Xdebug, -Xrunjdwp) are in the java(.ini | rc) (prior to OpenOffice.org2.0)
file, disable them by putting semicolons at the beginning of the respective lines. For
OpenOffice.org2.0 and later, make sure the debug options are removed in the Parameters
dialog. This dialog can be found in the options dialog (Tools Options OpenOffice.org
Java). The regcomp or tool or the Extension Manager may hang, because the JVM is waiting for
a debugger to be attached.

4.6 C++ Component

In this section, a sample component containing two service implementations with helpers and
without helpers implemented are presented. The complete source code and the gnu makefile are in
samples/simple_cpp_component.

The first step for the C++ component is to define a language-independent interface, so that the
UNO object can communicate with others. The IDL specification for the component defines one
interface my_module.XSomething and two old-style services implementing this interface (if new-
style services were used instead, the example would not be much different). In addition, the
second service called my module.MyService2 implements the com.sun.star.lang.XInitial-
ization interface, so that MyService2 can be instantiated with arguments passed to it during
runtime.

#include <com/sun/star/uno/XInterface.idl>
#include <com/sun/star/lang/XInitialization.idl>

module my_module

{

interface XSomething : com::sun::star::uno::XInterface

{

string methodOne([in] string val);

}i

service MyServicel

{
interface XSomething;

}i

service MyService2
{
interface XSomething;
interface com::sun::star::lang::XInitialization;

bi
bi
This IDL is compiled to produce a binary type library file (.urd file), by executing the following

commands. The types are compiled and merged into a registry simple_component.rdb, that will be
linked into the OpenOffice.org installation later.

S idlc -I<SDK>/idl some.idl
$ regmerge simple component.rdb /UCR some.urd

The cppumaker tool must be used to map IDL to C++:
$ cppumaker -BUCR -Tmy module.XSomething <officepath>/program/types.rdb simple component.rdb

For each given type, a pair of header files is generated, a .hdl and a .hpp file. To avoid conflicts, all
C++ declarations of the type are in the .hdl and all definitions, such as constructors, are in the .hipp
file. The .hpp is the one to include for any type used in C++.

261

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html

262

The next step is to implement the core interfaces, and the implementation of the component opera-
tions component getFactory (), component writeInfo () and
component getImplementationEnvironment () with or without helper methods.

4.6.1 Class Definition with Helper Template Classes

XInterface, XTypeProvider and XWeak

The SDK offers helpers for ease of developing. There are implementation helper template classes
that deal with the implementation of com.sun.star.uno.XInterface and
com.sun.star.lang.XTypeProvider, as well as com.sun.star.uno.xWeak. These classes let you
focus on the interfaces you want to implement.

The implementation of my module.MyService2 uses the : :cppu: :WeakImplHelper3<> helper.
The 3 stands for the number of interfaces to implement. The class declaration inherits from this
template class which takes the interfaces to implement as template parameters.
(Components/CppComponent/service2_impl.cxx)

#include <cppuhelper/implbase3.hxx> // "3" implementing three interfaces
#include <cppuhelper/factory.hxx>
#include <cppuhelper/implementationentry.hxx>

#include <com/sun/star/lang/XServicelInfo.hpp>

#include <com/sun/star/lang/XInitialization.hpp>

#include <com/sun/star/lang/IllegalArgumentException.hpp>
#include <my module/XSomething.hpp>

using namespace ::rtl; // for OUString
using namespace ::com::sun::star; // for sdk interfaces
using namespace ::com::sun::star::uno; // for basic types

namespace my_sc_impl {

class MyService2Impl : public ::cppu::WeakImplHelper3< ::my module::XSomething,
lang: :XServiceInfo,
lang: :XInitialization >
{

}i
}

The next section focusses on coding com.sun.star.lang.XServicelInfo,
com.sun.star.lang.XInitialization and the sample interface my_module.XSomething.

The cppuhelper shared library provides additional implementation helper classes, for example,
supporting com.sun.star.lang.XComponent. Browse the ::cppu namespace in the C++ reference of
the SDK or on udk.openoffice.org.

XServicelnfo

An UNO service implementation supports com.sun.star.lang.XServiceInfo providing infor-
mation about its implementation name and supported services. The implementation name is a
unique name referencing the specific implementation. In this case,

my module.my sc impl.MyServicel and my module.my sc impl.MyService2 respectively. The
implementation name is used later when registering the implementation into the
simple_component.rdb registry used for OpenOffice.org. It links a service name entry to one imple-
mentation, because there may be more than one implementation. Multiple implementations of the
same service may have different characteristics, such as runtime behavior and memory footprint.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XWeak.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

Our service instance has to support the com. sun.star.lang.XServicelInfo interface. This inter-
face has three methods, and can be coded for one supported service as follows:
(Components/CppComponent/service2_impl.cxx)

// XServiceInfo implementation
OUString MyService2Impl::getImplementationName ()
throw (RuntimeException)
{
// unique implementation name
return OUString(RTL_CONSTASCII USTRINGPARAM ("my module.my sc_impl.MyService2"));
}
sal Bool MyService2Impl::supportsService(OUString const & serviceName)
throw (RuntimeException)
{
// this object only supports one service, so the test is simple
return serviceName.equalsAsciil.(RTL CONSTASCII_ STRINGPARAM ("my module.MyService2"));
}
Sequence< 0OUString > MyService2Impl::getSupportedServiceNames ()
throw (RuntimeException)
{
return getSupportedServiceNames MyService2Impl () ;

}

4.6.2 Implementing your own Interfaces

For the my module.XSomething interface, add a string to be returned that informs the caller when
methodOne () was called successfully . (Components/CppComponent/service2_impl.cxx)

OUString MyService2Impl::methodOne (OUString const & str
throw (RuntimeException)
{
return OUString(RTL_CONSTASCII_USTRINGPARAM (
"called methodOne () of MyService2 implementation: ")) + str;

4.6.3 Providing a Single Factory Using a Helper Method

C++ component libraries must export an external "C" function called component getFactory ()
that supplies a factory object for the given implementation. Use

::cppu: :component getFactoryHelper () to create this function. The declarations for it are
included through cppuhelper/implementationentry.hxx.

The component getFactory () method appears at the end of the following listing. This method
assumes that the component includes a static : : cppu: : ImplementationEntry array

s_component entries[], which contains a number of function pointers. The listing shows how to
write the component, so that the function pointers for all services of a multi-service component are
correctly initialized. (Components/CppComponent/service2_impl.cxx)

#include <cppuhelper/implbase3.hxx> // "3" implementing three interfaces
#include <cppuhelper/factory.hxx>
#include <cppuhelper/implementationentry.hxx>

#include <com/sun/star/lang/XServiceInfo.hpp>

#include <com/sun/star/lang/XInitialization.hpp>

#include <com/sun/star/lang/IllegalArgumentException.hpp>
#include <my module/XSomething.hpp>

using namespace ::rtl; // for OUString
using namespace ::com::sun::star; // for sdk interfaces
using namespace ::com::sun::star::uno; // for basic types

namespace my sc_impl

{

class MyService2Impl : public ::cppu::WeakImplHelper3<
::my _module::XSomething, lang::XServicelInfo, lang::XInitialization >

{
OUString m_arg;

263

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html

public:
// focus on three given interfaces,
// no need to implement XInterface, XTypeProvider, XWeak

// XInitialization will be called upon createlnstanceWithArguments[AndContext] ()
virtual void SAL_CALL initialize(Sequence< Any > const & args)
throw (Exception);
// XSomething
virtual OUString SAL_CALL methodOne(OUString const & str
throw (RuntimeException) ;
// XServicelInfo
virtual OUString SAL CALL getImplementationName ()
throw (RuntimeException) ;
virtual sal Bool SAL CALL supportsService(OUString const & serviceName)
throw (RuntimeException) ;
virtual Sequence< OUString > SAL CALL getSupportedServiceNames (
throw (RuntimeException) ;

}i

// Implementation of XSomething, XServiceInfo and XInitilization omitted here:

// component operations from servicel impl.cxx
extern Sequence< OUString > SAL CALL getSupportedServiceNames_ MyServicelImpl () ;
extern OUString SAL CALL getImplementationName MyServicelImpl () ;
extern Reference< XInterface > SAL CALL create MyServicelImpl (
Reference< XComponentContext > const & xContext)
SAL _THROW(());
// component operations for MyService2Impl
static Sequence< OUString > getSupportedServiceNames MyService2Impl ()
{
Sequence<OUString> names (1) ;
names[0] = OUString (RTL_CONSTASCII USTRINGPARAM ("my module.MyService2")) ;
return names;

}

static OUString getImplementationName MyService2Impl (

{
return OUString(RTL_CONSTASCII_ USTRINGPARAM (
"my module.my sc implementation.MyService2"));

Reference< XInterface > SAL_ CALL create MyService2Impl (
Reference< XComponentContext > const & xContext)
SAL_THROW(())

return static_cast< lang::XTypeProvider * >(new MyService2Impl ());

create MyServicelImpl, getImplementationName MyServicellImpl,
getSupportedServiceNames_MyServicelImpl, ::cppu::createSingleComponentFactory,
0, 0

create MyService2Impl, getImplementationName MyService2Impl,
getSupportedServiceNames MyService2Impl, ::cppu::createSingleComponentFactory,
0, O

extern "C"
{
void * SAL_CALL component_getFactory (
sal_Char const * implName, lang::XMultiServiceFactory * xMgr,
registry::XRegistryKey * xRegistry
return ::cppu::component getFactoryHelper (
implName, xMgr, xRegistry, ::my_sc_impl::s_component_entries);

// getImplementationEnvironment and component writeInfo are described later, we omit them here
}
The static variable s_component entries defines a null-terminated array of entries concerning the

service implementations of the shared library. A service implementation entry consists of function
pointers for

. Object creation: create MyServiceXImpl ()

264 OpenOffice.org 2.3 Developer's Guide « June 2007

implementation name: getImplementationName MyServiceXImpl ()
supported service names: getSupportedServiceNames MyServiceXImpl ()
factory helper to be used: : :cppu: :createComponentFactory ()

The last two values are reserved for future use and therefore can be 0.

4.6.4 Write Registration Info Using a Helper Method

Use : :cppu: :component writeInfoHelper () toimplement component writeInfo (): This func-
tion is called by regcomp during the registration process.
[SCOURCE:Components/simple_cpp_component/service2_impl.cxx]

extern "C" sal Bool SAL CALL component writeInfo (
lang::XMultiServiceFactory * xMgr, registry::XRegistryKey * xRegistry
{
return ::cppu::component writeInfoHelper (
xMgr, xRegistry, ::my sc_impl::s component entries);

Note that component writeInfoHelper () uses the same array of ::cppu::Implementatio-
nEntry structs as component getFactory (),thatis, s component entries.

4.6.5 Provide Implementation Environment

The function called component getImplementationEnvironment () tells the shared library
component loader which compiler was used to build the library. This information is required if
different components have been compiled with different compilers. A specific C++-compiler is
called an environment. If different compilers were used, the loader has to bridge interfaces from
one compiler environment to another, building the infrastructure of communication between those
objects. It is mandatory to have the appropriate C++ bridges installed into the UNO runtime. In
most cases, the function mentioned above can be implemented this way: (Components/CppCom-
ponent/service2_impl.cxx)

extern "C" void SAL CALL component getImplementationEnvironment (
sal_Char const ** ppEnvTypeName, uno_Environment ** ppEnv)

{
*ppEnvTypeName = CPPU_CURRENT_ LANGUAGE_ BINDING_NAME;

}

The macro CPPU_CURRENT LANGUAGE_BINDING NAME is a C string defined by the compiling envi-
ronment, if you use the SDK compiling environment. For example, when compiling with the
Microsoft Visual C++ compiler, it defines to "msci", but when compiling with the GNU gcc 3, it
defines to "gcc3".

4.6.6 Implementing without Helpers

In the following section, possible implementations without helpers are presented. This is useful if
more interfaces are to be implemented than planned by the helper templates. The helper templates
only allow up to ten interfaces. Also included in this section is how the core interfaces work.

265

XInterface Implementation

Object lifetime is controlled through the common base interface com.sun.star.uno.XInterface
methods acquire () and release () . These are implemented using reference-counting, that is,
upon each acquire (), the counter is incremented and upon each release (), it is decreased. On
last decrement, the object dies. Programming in a thread-safe manner, the modification of this
counter member variable is commonly performed by a pair of sal library functions called

osl incrementInterlockedcount () and osl decrementInterlockedcount () (include
osl/interlck.h). (Components/CppComponent/servicel_impl.cxx)

" Be aware of symbol conflicts when writing code. It is common practice to wrap code into a separate
@ namespace, such as "my sc_impl". The problem is that symbols may clash during runtime on Unix when
your shared library is loaded.

namespace my_sc_impl
{

class MyServicelImpl

{
oslInterlockedCount m_refcount;
public:
inline MyServicelImpl () throw ()
: m_refcount(0)

{}

// XInterface

virtual Any SAL CALL queryInterface(Type const & type)
throw (RuntimeException) ;

virtual void SAL CALL acquire ()
throw ();

virtual void SAL CALL release()
throw ();

}i
void MyServicelImpl::acquire ()
throw ()
{
// thread-safe incrementation of reference count
::osl_incrementInterlockedCount(&m_refcount);
}
void MyServicelImpl::release ()
throw ()
{
// thread-safe decrementation of reference count
if (0 == ::0s8l_decrementInterlockedCount (&m_refcount))
{
delete this; // shutdown this object
}
}

In the queryInterface () method, interface pointers have to be provided to the interfaces of the
object. That means, cast this to the respective pure virtual C++ class generated by the cppumaker
tool for the interfaces. All supported interfaces must be returned, including inherited interfaces like
XInterface. (Components/CppComponent/servicel impl.cxx)

Any MyServicelImpl::queryInterface(Type const & type)
throw (RuntimeException)
{
if (type.equals(::cppu::UnoType< Reference< XInterface > >::get()))

// return XInterface interface (resolve ambiguity caused by multiple inheritance from
// XInterface subclasses by casting to lang::XTypeProvider)
Reference< XInterface > x(static_cast< lang::XTypeProvider * >(this));
return makeAny(x);
}
if (type.equals(::cppu::UnoType< Reference< lang::XTypeProvider > >::get()))
{

// return XInterface interface
Reference< XInterface > x(static_cast< lang::XTypeProvider * >(this));
return makeAny(x);
}
if (type.equals((::cppu::UnoType< Reference< lang::XServiceInfo > >::get()))
{

// return XServicelInfo interface
Reference< lang::XServiceInfo > x(static cast< lang::XServiceInfo * >(this));
return makeAny(x);

}

if (type.equals(::cppu::UnoType< Reference< ::my module::XSomething > >::get()))

266 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html

// return sample interface
Reference< ::my module::XSomething > x(static_cast< ::my module::XSomething * >(this));
return makeAny(x);

}
// querying for unsupported type
return Any () ;

XTypeProvider Implementation

When implementing the com.sun.star.lang.XTypeProvider interface, two methods have to be
coded. The first one, getTypes () provides all implemented types of the implementation, excluding
base types, such as com.sun.star.uno.xXInterface. The second one, get ImplementationId()
provides a unique ID for this set of interfaces. A thread-safe implementation of the above
mentioned looks like the following example: (Components/CppComponent/servicel_impl.cxx)

Sequence< Type > MyServicelImpl::getTypes ()
throw (RuntimeException)

{
Sequence< Type > seq(3);

seq[0] = ::cppu::UnoType< Reference< lang::XTypeProvider > >::get();
seq[1] = ::cppu::UnoType< Reference< lang::XServiceInfo > >::get();
seq[2] = ::cppu::UnoType< Reference< ::my module::XSomething > >::get();

return seq;
}
Sequence< sal Int8 > MyServicelImpl::getImplementationId ()
throw (RuntimeException)
{
static Sequence< sal Int8 > * s pId = 0;
if (! s_pId)
{
// create unique id
Sequence< sal Int8 > id(16);

::rtl_createUuid((sal_ulInt8 *)id.getArray(), 0, sal_True);
// guard initialization with some mutex
::0sl::MutexGuard guard(::osl::Mutex::getGlobalMutex());
if (! s_pId)

{
static Sequence< sal Int8 > s id(id);
s pId = &s id;
}
}

return *s_pId;

In general, do not acquire () mutexes when calling alien code if you do not know what the called code is
doing. You never know what mutexes the alien code is acquiring which can lead to deadlocks. This is the
reason, why the latter value (uuid) is created before the initialization mutex is acquired. After the mutex is
successfully acquired, the value of s_pID is checked again and assigned if it has not been assigned before.
This is the design pattern known as double-checked locking.

The above initialization of the implementation ID does not work reliably on certain platforms. See 6.4.1
Advanced UNO - Design Patterns - Double-Checked Locking for better ways to implemnt this.

Providing a Single Factory

The function component getFactory () provides a single object factory for the requested imple-
mentation, that is, it provides a factory that creates object instances of one of the service implemen-
tations. Using a helper from cppuhelper/factory.hxx, this is implemented quickly in the following
code: (Components/CppComponent/servicel_impl.cxx)

#include <cppuhelper/factory.hxx>

namespace my sc_impl

{

static Reference< XInterface > SAL CALL create MyServicelImpl (
Reference< XComponentContext > const & xContext)

267

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XInterface.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

SAL_THROW(())
{
return static_cast< lang::XTypeProvider * >(new MyServicelImpl());
}
static Reference< XInterface > SAL CALL create MyService2Impl (
Reference< XComponentContext > const & xContext)
SAL THROW(())
{
return static cast< lang::XTypeProvider * >(new MyService2Impl ());
}
}

extern "C" void * SAL CALL component getFactory(
sal_Char const * implName, lang::XMultiServiceFactory * xMgr, void *)
{
Reference< lang::XSingleComponentFactory > xFactory;
if (0 == ::rtl str compare(implName, "my module.my sc_impl.MyServicel"))
{
// create component factory for MyServicel implementation
OUString serviceName (RTL_CONSTASCII_USTRINGPARAM ("my module.MyServicel"));
xFactory = ::cppu::createSingleComponentFactory (
::my_sc_impl::create MyServicelImpl,
OUString (RTL_CONSTASCII_USTRINGPARAM ("my module.my sc_impl.MyServicel")),
Sequence< 0OUString >(&serviceName, 1));
}
else if (0 == ::rtl_str compare(implName, "my module.my sc_impl.MyService2"))
{
// create component factory for MyServicel2 implementation
OUString serviceName (RTL_CONSTASCII_USTRINGPARAM ("my module.MyService2"));
xFactory = ::cppu::createSingleComponentFactory (
::my_sc_impl::create MyService2Impl,
OUString (RTL CONSTASCII USTRINGPARAM ("my module.my sc impl.MyService2")),
Sequence< OUString >(&serviceName, 1));

if (xFactory.is())
xFactory->acquire () ;
return xFactory.get(); // return acquired interface pointer or null
}
In the example above, note the function : :my sc impl::create MyServicellImpl () thatis called
by the factory object when it needs to instantiate the class. A component context
com.sun.star.uno.XComponentContext is provided to the function, which may be passed to the

constructor of MyServicelImpl.

Write Registration Info

The function component writeInfo () is called by the shared library component loader upon
registering the component into a registry database file (.rdb). The component writes information
about objects it can instantiate into the registry when it is called by regcomp .
(Components/CppComponent/servicel_impl.cxx)

extern "C" sal Bool SAL_CALL component writeInfo(
lang::XMultiServiceFactory * xMgr, registry::XRegistryKey * xRegistry
{
if (xRegistry)
{
try
{
// implementation of MyServicelA
Reference< registry::XRegistryKey > xKey (
xRegistry->createKey(OUString(RTL_CONSTASCII_USTRINGPARAM (
"my module.my_sc_impl.MyServicel/UNO/SERVICES"))));
// subkeys denote implemented services of implementation
xKey->createKey (OUString (RTL_CONSTASCII_USTRINGPARAM (
"my module.MyServicel")));
// implementation of MyServicelB
xKey = xRegistry->createKey(OUString(RTL_CONSTASCII_ USTRINGPARAM (
"my module.my sc_impl.MyService2/UNO/SERVICES")));
// subkeys denote implemented services of implementation
xKey->createKey (OUString (RTL_CONSTASCII_USTRINGPARAM (
"my module.MyService2")));
return sal True; // success
}
catch (registry::InvalidRegistryException &)
{
// function fails if exception caught
}
}

return sal False;

268 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

4.6.7 Storing the Service Manager for Further Use

The single factories expect a static create_< ImplementationClass> () function. For instance,
create MyServicelImpl ()takes a reference to the component context and instantiates the imple-
mentation class using new ImplementationClass (). A constructor can be written for <Implemen-
tationClass> that expects a reference to an com.sun.star.uno.XComponentContext and stores
the reference in the instance for further use.

static Reference< XInterface > SAL CALL create MyService2Impl (
Reference< XComponentContext > const & xContext)
SAL_THROW(())

// passing the component context to the constructor of MyService2Impl
return static_cast< lang::XTypeProvider * >(new MyService2Impl (xContext));

4.6.8 Create Instance with Arguments

If the service should be raised passing arguments through

com.sun.star.lang.XMultiComponentFactory:createInstanceWithArgumentsAndContext ()
and com.sun.star. lang.XMultiServiceFactory:createInstanceWithArguments(), it has to
implement the interface com.sun.star.lang.XInitialization. The second service

my module.MyService2 implements it, expecting a single string as an argument.
(Components/CppComponent/service2_impl.cxx)

// XInitialization implementation
void MyService2Impl::initialize(Sequence< Any > const & args
throw (Exception)
{
if (1 !'= args.getLength())
{
throw lang::IllegalArgumentException (
OUString (RTL CONSTASCII USTRINGPARAM("give a string instanciating this component!")),
(::cppu::0OWeakObject *)this, // resolve to XInterface reference
0); // argument pos
}
if (! (args[0] >>= m_arqg))
{
throw lang::IllegalArgumentException (
OUString(RTL_CONSTASCII_ USTRINGPARAM("no string given as argument!")),
(::cppu::0OWeakObject *)this, // resolve to XInterface reference
0); // argument pos

4.6.9 Multiple Components in One Dynamic Link Library

The construction of C++ components allows putting as many service implementations into a
component file as desired. Ensure that the component operations are implemented in such a way
that component writeInfo () and component getFactory () handle all services correctly. Refer
to the sample component simple component to see an example on how to implement two services
in one link library.

269

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html#createInstanceWithArguments
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiComponentFactory.html#createInstanceWithArgumentsAndContext
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

270

4.6.10 Building and Testing C++ Components

Build Process

For details about building component code, see the gnu makefile. It uses a number of platform
dependent variables used in the SDK that are included from <SDK>/settings/settings.mk. For
simplicity, details are omitted here, and the build process is just sketched in eight steps:

1. The UNOIDL compiler compiles the .idl file some.idl into an urd file.
2. The resulting binary .urd files are merged into a new simple_component.rdb.

3. The tool xmi2cmp parses the xml component description simple_component.xml for types needed
for compiling. This file describes the service implementation(s) for deployment, such as the
purpose of the implementation(s) and used types. Visit
http:/ /udk.openoffice.org/common/man/module_description.html for details about the
syntax of these XML files.

4. The types parsed in step 3 are passed to cppumaker, which generates the appropriate header
pairs into the output include directory using simple_component.rdb and the OpenOffice.org type
library types.rdb that is stored in the program directory of your OpenOffice.org installation.

For your own component you can simplify step 3 and 4, and pass the types used by your component to
cppumaker using the -T option.

5. The source files servicel_impl.cxx and service2_impl.cxx are compiled.

6. The shared library is linked out of object files, linking dynamically to the UNO base libraries
sal, cppu and cppuhelper. The shared library’s name is libsimple_component.so on Unix and
simple_component.dll on Windows.

In general, the shared library component should limit its exports to only the above mentioned functions
(prefixed with component_) to avoid symbol clashes on Unix. In addition, for the gnu gcc3 C++ compiler, it
is necessary to export the RTTI symbols of exceptions, too.

7. The shared library component is registered into simple_component.rdb. This can also be done
manually running

$ regcomp -register -r simple component.rdb -c simple component.dll

Test Registration and Use

The component’s registry simple_component.rdb has entries for the registered service implementa-
tions. If the library is registered successfully, run:

$ regview simple_ component.rdb
The result should look similar to the following:

/
/ UCR
/ my_module
/ XSomething

. interface information ...

/ IMPLEMENTATIONS
/ my module.my sc_impl.MyService2
/ UNO
/ ACTIVATOR
Value: Type
Size

RG_VALUETYPE STRING
34

OpenOffice.org 2.3 Developer's Guide « June 2007

Data = "com.sun.star.loader.SharedLibrary"

/ SERVICES
/ my_module.MyService2
/ LOCATION
Value: Type = RG_VALUETYPE_ STRING
Size = 21
Data = "simple component.dll"

/ my _module.my sc_impl.MyServicel
/ UNO
/ ACTIVATOR

Value: Type = RG_VALUETYPE STRING
Size = 34
Data = "com.sun.star.loader.SharedLibrary"
/ SERVICES
/ my module.MyServicel
/ LOCATION
Value: Type = RG_VALUETYPE STRING
Size = 21
Data = "simple_ component.dll"
/ SERVICES

/ my_module.MyServicel
Value: Type RG_VALUETYPE_STRINGLIST

Size = 40
Len =1
Data = 0 = "my module.my sc_ impl.MyServicel"

/ my_module.MyService2
Value: Type RG_VALUETYPE_STRINGLIST

Size = 40
Len =1
Data = 0 = "my module.my sc_impl.MyService2"

OpenOffice.org recognizes registry files being inserted into the unorc file (on Unix, uno.ini on
Windows) in the program directory of your OpenOffice.org installation. Extend the types and
services in that file by simple_component.rdb. The given file has to be an absolute file URL, but if the
rdb is copied to the OpenOffice.org program directory, a SORIGIN macro can be used, as shown in
the following unorc file:

[Bootstrap]

UNO TYPES=$ORIGIN/types.rdb $ORIGIN/simple component.rdb

UNO_SERVICES=$ORIGIN/services.rdb $SORIGIN/simple component.rdb

Second, when running OpenOffice.org, extend the PATH (Windows) or LD_LIBRARY_PATH
(Unix), including the output path of the build, so that the loader finds the component. If the shared
library is copied to the program directory or a link is created inside the program directory (Unix
only), do not extend the path.

Launching the test component inside a OpenOffice.org Basic script is simple to do, as shown in the
following code:

Sub Main

REM calling servicel impl

mgr = getProcessServiceManager ()

o = mgr.createInstance ("my module.MyServicel")
MsgBox o.methodOne ("foo"

MsgBox o.dbg_supportedInterfaces

REM calling service2 impl

dim args(0)

args(0) = "foo"

o = mgr.createInstanceWithArguments ("my module.MyService2", args()
MsgBox o.methodOne ("bar"

MsgBox o.dbg_supportedInterfaces

End Sub

This procedure instantiates the service implementations and performs calls on their interfaces. The
return value of the methodone () call is brought up in message boxes. The Basic object property
dbg_supportedInterfaces retrieves its information through the com.sun.star.lang.XTypePro-
vider interfaces of the objects.

271

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html

272

4.7 Integrating Components into OpenOffice.org

If a component needs to be called from the OpenOffice.org user interface, it must be able to take
part in the communication between the Ul layer and the application objects. OpenOffice.org uses
command URLs for this purpose. When a user chooses an item in the user interface, a command
URL is dispatched to the application framework and processed in a chain of responsibility until an
object accepts the command and executes it, thus consuming the command URL. This mechanism
is known as the dispatch framework , it is covered in detail in chapter 7.1.6 Office Development -
OpenOffice.org Application Environment - Using the Dispatch Framework.

From version 1.1.0, OpenOffice.org provides user interface support for custom components by two
basic mechanisms:

Components can be enabled to process command URLs. There are two ways to accomplish this.
You can either make them a protocol handler for command URLs or integrate them into the job
execution environment of OpenOffice.org. The protocol handler technique is simple, but it can
only be used with command URLs in the dispatch framework. A component for the job execu-
tion environment can be used with or without command URLs, and has comprehensive support
when it comes to configuration, job environment, and lifetime issues.

The user interface can be adjusted to new components. On the one hand, you can add new
menus and toolbar items and configure them to send the command URLs needed for your
component. On the other hand, it is possible to disable existing commands. All this is possible
by adding certain files to the extension. When users of your component install the extension, the
GUI is adjusted automatically.

The left side of Illustration 4.2 shows the two possibilities for processing command URLSs: either
custom protocol handlers or the specialized job protocol. On the right, you see the job execution
environment, which is used by the job protocol, but can also be used without command URLs from
any source code.

OpenOffice.org 2.3 Developer's Guide « June 2007

User Interface Source code

queryDispatch/
dispatch (URL) trigger (EventName)

Frame JobExecutor

registered at

runtime

Disabling

; Commands

Interceptor 1 ¢ Frame.close() Desktop.terminate()

* —» Interception

Interceptor n ¢ configured

I Document ’ Protocol Wrapper
Controller Handler 1
¢ Env/CFG CFG
Protocol , Protocol ¢ T |
Handler 1 Handler n)
Job1 : :
¢ bind special Configuration
protocol
Content to jobs Job
Handler) Dispatch —>

* Wrapper

Loader) Job n .

Hllustration 4.2: Processing command URLs and the job execution environment

This section describes how to use these mechanisms. It discusses protocol handlers and jobs, then
describes how to customize the OpenOffice.org user interface for components.

4.7.1 Protocol Handler

The dispatch framework binds user interface controls, such as menu or toolbar items, to the func-
tionality of OpenOffice.org. Every function that is reachable in the user interface is described by a
command URL and corresponding parameters.

The protocol handler mechanism is an API that enables programmers to add arbitrary URL
schemas to the existing set of command URLs by writing additional protocol handlers for them.

273

Such a protocol handler must be implemented as a UNO component and registered in the
OpenOffice.org configuration for the new URL schema.

Overview

To issue a command URL, the first step is to locate a dispatch object that is responsible for the
URL. Start with the frame that contains the document for which the command is meant. Its inter-

face method com.sun.star.frame.XDispatchProvider:queryDispatch ()is called with a URL
and special search parameters to locate the correct target. This request is passed through the

following instances:

disabling commands Checks if command is on the list of disabled commands, described in 4.7.4
Writing UNO Components - Integrating Components into OpenOffice.org -
Disable Commands

interception Intercepts command and re-routes it, described in 7.1.6 Office Development -
OpenOffice.org Application Environment - Using the Dispatch Framework -
Dispatch Interception

targeting Determines target frame for command, described in 7.1.5 Office Develop-
ment - OpenOffice.org Application Environment - Handling Documents -
Loading Documents - Target Frame

controller Lets the controller of the frame try to handle the command, described in
7.1.6 Office Development - OpenOffice.org Application Environment - Using the
Dispatch Framework - Processing Chain

protocol handler Determines if there is a custom handler for the command, described in this
section

interpret as loadable content Loads content from file, described in 7.1.5 Office Development -
OpenOffice.org Application Environment - Handling Documents - Loading
Documents - URL Parameter. Generally contents are loaded into a frame by a
com.sun.star.frame.Frameloader, butif a content (e.g. a sound)
needs no frame, a com.sun.star.frame.ContentHandler service is
used, which needs no target frame for its operation.

The list shows that the protocol handler will only be used if the URL has not been called before.
Because targeting has already been done, it is clear that the command will run in the located target
frame environment, which is usually "_self".

The target "_blank" cannot be used for a protocol handler. Since "_blank" leads to the creation of a new frame
for a component, there would be no component yet for the protocol handler to work with.

A protocol handler decides by itself if it returns a valid dispatch object, that is, it is asked to agree
with the given request by the dispatch framework. If a dispatch object is returned, the requester
can use it to dispatch the URL by calling its dispatch () method.

Implementation

A protocol handler implementation must follow the service definition
com.sun.star.frame.ProtocolHandler. At least the interface com.sun.star.frame.xDis-
patchProvider must be supported.

274 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ContentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ContentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ContentHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/FrameLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html#queryDispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html#queryDispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html#queryDispatch

—O com.sun.star.frame.XDispatchProvider

com.sun.star.frame.
ProtocolHandler
<<service>> com.sun.star.lang.XInitialization

Illustration 4.3: Protocol handler

The interface xDispatchProvider supports two methods:

XDispatch queryDispatch([in] ::com::sun::star::util::URL URL,
[in] string TargetFrameName,
[in] long SearchFlags)
sequence< XDispatch > queryDispatches([in] sequence< DispatchDescriptor > Requests

The protocol handler is asked for its agreement to execute a given URL by a call to the interface
method com.sun.star.frame.XDispatchProvider:queryDispatch (). The incoming URL
should be parsed and validated. If the URL is valid and the protocol handler is able to handle it, it
should return a dispatch object, thus indicating that it accepts the request.

The dispatch object must support the interface com.sun.star. frame.XDispatch with the
methods

[oneway] void dispatch ([in] ::com::sun::star::util::URL URL,
[in] sequence< ::com::sun::star::beans::PropertyValue > Arguments
addStatusListener [oneway] void addStatusListener ([in] XStatusListener Control,
[in] ::com::sun::star::util::URL URL
removeStatusListener [oneway] void removeStatusListener ([in] XStatusListener Control,
[in] ::com::sun::star::util::URL URL

Optionally, the dispatch object can support the interface com.sun.star. frame.XNotifyingDis—
patch, which derives from XDispatch and introduces a new method dispatchWithNotifica-
tion (). This interface is preferred if it is present.

[oneway] void dispatchWithNotification (

[in] com::sun::star::util::URL URL,

[in] sequence<com::sun::star::beans::PropertyValue> Arguments,

[in] com::sun::star::frame::XDispatchResultListener Listener);
A basic protocol handler is free to implement XDispatch itself, so it can simply return itself in the
queryDispatch () implementation. But it is advisable to return specialized helper dispatch objects
instead of the protocol handler instance. This helps to decrease the complexity of status updates. It
is easier to notify status listeners for a single-use dispatch object instead of multi-use dispatch
objects, which have to distinguish the URLs given in addStatusListener () all the time.

To supply the Ul with status information for a command, it is required to call back a
com.sun.star.frame.XStatusListener during its registration immediately, for example:

public void addStatusListener (XStatusListener xControl, URL aURL) {
FeatureStateEvent aState = new FeatureStateEvent () ;
aState.FeatureURL aURL;
aState.IsEnabled true;
aState.State Boolean.TRUE;
xControl.statusChanged (aState) ;
m_lListenerContainer.add (xControl) ;

}

A protocol handler can support the interface com.sun.star.lang.XInitialization if it wants to
be initialized with a com.sun.star. frame.Frame environment to work with. XInitialization
contains one method:

void initialize([in] sequence< any > aArguments

A protocol handler is generally used in a well known com.sun.star. frame.Frame context, there-
fore the dispatch framework always passes this frame context through initialize () as the first
argument, if XxInitialization is present. Its com.sun.star. frame.XFrame interface provides

275

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStatusListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStatusListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStatusListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XNotifyingDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html#queryDispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html#queryDispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatchProvider.html#queryDispatch

276

access to the controller, from which you can get the document model and have a good starting
point to work with the document.

Mlustration 4.3 shows how to get to the controller and the document model from an xFrame inter-
face. The chapter 7.1.3 Office Development - OpenOffice.org Application Environment - Using the
Component Framework describes the usage of frames, controllers and models in more detail.

com.sun.star.frame. getCurrentController ()
XModel, [~ °°°°7°7°7 N

com.sun.star.frame. getFrame (

getModel () XController

- am e d

<

________ com.sun.star.frame.
getController () XFrame

getContainerWindow () getComponentWindow ()

VvV

Container Component
Window Window

<

Hllustration 4.4: Frame-controller-model organization

A protocol handler can be implemented as a singleton, but this poses multithreading difficulties. In a multi-
threaded environment it is most unlikely that the initial frame context matches every following dispatch
request. So you have to be prepared for calls to initialize () by multiple threads for multiple frames. A
dispatch object can also be used more then once, but must be bound to the target frame that was specified in
the original queryDispatch () call. A change of the frame context can cause trouble if the protocol handler
returns itself as a dispatch object. A protocol handler singleton must return new dispatch objects for every
request, which has to be initialized with the current context of the protocol handler, and you have to
synchronize between initialize () and queryDispatch (). The protocol handler would have to serve
as a kind of factory for specialized dispatch objects.

You can avoid these problems, if you write your protocol handler as a multi-instance service.

The opportunity to deny a queryDispatch () call allows you to register a protocol handler for a
URL schema using wildcards, and to accept only a subset of all possible URLs. That way the
handler object can validate incoming URLs and reject them if they appear to be invalid. However,
this feature should not be used to register different protocol handlers for the same URL schema
and accept different subsets by different handler objects, because it would be very difficult to
avoid ambiguities.

Since a protocol handler is a UNO component, it must contain the component operations needed
by a UNO service manager. These operations are certain static methods in Java or export functions
in C++. It also has to implement the core interfaces used to enable communication with UNO and
the application environment. For more information on the component operations and core inter-
faces, please see 4.3 Writing UNO Components - Component Architecture and 4.4 Writing UNO
Components - Core Interfaces to Implement.

OpenOffice.org 2.3 Developer's Guide « June 2007

Java Protocol Handler - vnd.sun.star.framework. ExampleHandler

The following example shows a simple protocol handler implementation in Java. For simplicity,

the component operations are omitted.

// imports

#import com.sun.star.beans.*;
#import com.sun.star.frame.*;
#import com.sun.star.uno.*;
#import com.sun.star.util.*;

// definition
public class ExampleHandler implements com.sun.star.frame.XDispatchProvider,
com.sun.star.lang.XInitialization {
// member

/** points to the frame context in which this handler runs, is set in initialize()*/

private com.sun.star.frame.XFrame m_xContext;

// Dispatch object as inner class

class OwnDispatch implements com.sun.star.frame.XDispatch {
/** the target frame, in which context this dispatch must work */
private com.sun.star.frame.XFrame m xContext;

/** describe the function of this dispatch.

* Because a URL can contain e.g. optional arguments

* this URL means the main part of such URL sets only. */
private com.sun.star.util.URL m_aMainURL;

/** contains all interested status listener for this dispatch */
private java.lang.HashMap m_lListener;

/** take over all neccessary parameters from outside. */

public OwnDispatch (com.sun.star.frame.XFrame xContext, com.sun.star.util.URL aMainURL)

m_xContext = xContext;
m_aMainURL = aMainURL;

/** execute the functionality, which is described by this URL.

*

* @param aURL

&3 this URL can describe the main function, we already know;
g but it can specify a sub function too! But queryDispatch ()
& and dispatch() are used in a generic way

o m_aMainURL and aURL will be the same.

*

* (@param 1lArgs

g optional arguments for this request

*

~

public void dispatch(com.sun.star.util.URL aURL, com.sun.star.beans.PropertyValue lArgs)

throws com.sun.star.uno.RuntimeException {
// ... do function
// ... inform listener if neccessary

/** register a new listener and bind it toe given URL.

* Note: Because the listener does not know the current state

* and may nobody change it next time, it is neccessary to inform it
* immediatly about this current state. So the listener is up to date.
Y

public void addStatusListener (com.sun.star.frame.XStatusListener xListener,
com.sun.star.util.URL aURL) throws com.sun.star.uno.RuntimeException

// ... register listener for given URL
// ... inform it immediatly about current state!
xListener.statusChanged(...);

}

/** deregister a listener for this URL. */

public void removeStatusListener (com.sun.star.frame.XStatusListener xListener,
com.sun.star.util.URLaURL) throws com.sun.star.uno.RuntimeException ({

// ... deregister listener for given URL

}

/** set the target frame reference as context for all following dispatches. */
public void initialize (com.sun.star.uno.Any[] lContext) {
m_xContext = (com.sun.star.frame.XFrame)com.sun.star.uno.AnyConverter.toObject (1Context[0]) ;

}

/** should return a valid dispatch object for the given URL.

*

* In case the URL is not valid an empty reference can be returned.

* The parameter sTarget and nFlags can be ignored. The will be " self" and 0

everytime.

277

278

public com.sun.star.frame.XDispatch queryDispatch (com.sun.star.util.URL aURL,

java.lang.String sTarget, int nFlags) throws com.sun.star.uno.RuntimeException ({

// check if given URL is valid for this protocol handler

if (!aURL.Main.startsWith ("myProtocol 1://") && !aURL.Main.startsWith ("myProtocol 2://"))

return null;
// and return a specialized dispatch object
// Of course "return this" would be possible too ...
return (com.sun.star.frame.XDispatch) (new OwnDispatch (m_xContext, aURL));

* optimized API call for remote.

It should be forwarded to queryDispatch() for every request item of the
given DispatchDescriptor list.

But note: it is not allowed to pack the return list of dispatch objects.
Every request in source list must match to a reference (null or valid) in
* the destination list!
*/
public com.sun.star.frame.XDispatch[] queryDispatches (

* ok ok ok ok ok %

com.sun.star.frame.DispatchDescriptor[] 1lRequests) throws com.sun.star.uno.RuntimeException

int ¢ = lRequests.length;

com.sun.star.frame.XDispatch[] 1Dispatches = new com.sun.star.frame.XDispatch[c];

for (int i=0; i<c; ++1)
1Dispatches[i] = queryDispatch (1lRequests[i].FeatureURL,
1Requests[i] .FrameName, lRequests[i].SearchFlags);
return lDispatches;

C++ Protocol Handler - org.openoffice.Office.addon.example

The next example shows a protocol handler in C++. The section 4.7.3 Writing UNO Components -
Integrating Components into OpenOffice.org - User Interface Add-Ons below will integrate this example

handler into the graphical user interface of OpenOffice.org.

The following code shows the UNO component operations that must be implemented in a C++
protocol handler example. The three C functions return vital information to the UNO environment:

- component getImplementationEnvironment () tells the shared library component loader

which compiler was used to build the library.

- component writeInfo ()is called during the registration process by the registration tool

regcomp , or indirectly when you use the Extension Manager.

- component_getFactory () provides a single service factory for the requested implementation.
This factory can be asked to create an arbitrary number of instances for only one service specifi-
cation, therefore it is called a single service factory, as opposed to a multi-service factory, where
you can order instances for many different service specifications. (A single service factory has

nothing to do with a singleton).
#include <stdio.h>

#ifndef RTL USTRING HXX
#include <rtl/ustring.hxx>
#endif

#ifndef CPPUHELPER QUERYINTERFACE HXX

#include <cppuhelper/queryinterface.hxx> // helper for querylInterface() impl
#endif

#ifndef CPPUHELPER FACTORY HXX_

#include <cppuhelper/factory.hxx> // helper for component factory

#endif

// generated c++ interfaces

#ifndef _COM_SUN_STAR_LANG XSINGLESERVICEFACTORY HPP
#include <com/sun/star/lang/XSingleServiceFactory.hpp>
#endif

#ifndef COM SUN STAR LANG XMULTISERVICEFACTORY HPP
#include <com/sun/star/lang/XMultiServiceFactory.hpp>
#endif

#ifndef COM SUN STAR LANG XSERVICEINFO HPP

#include <com/sun/star/lang/XServiceInfo.hpp>

#endif

#ifndef COM SUN STAR REGISTRY XREGISTRYKEY HPP
#include <com/sun/star/registry/XRegistryKey.hpp>

OpenOffice.org 2.3 Developer's Guide « June 2007

#endif

// include our specific addon header to get access to functions and definitions
#include <addon.hxx>

using namespace
using namespace
using namespace
using namespace
using namespace
using namespace

gewiely
$slosil;
:cppu;
:com::sun::star
:com: :sun::star
:com::sun::star

::uno;
::lang;
::registry;

VAV 0
//#### EXPORTED ##########4# 444444 HFHERERERERERERAHHEF AR AR ERERERER AR AR F I E RIS LSRR AR AR AR AR RS
[/ HREH AR R

J**

* Gives the environment this component belongs to.

*/

extern "C" void SAL CALL component getImplementationEnvironment (const sal_Char ** ppEnvTypeName,

uno_Environment

{

** ppEnv)

*ppEnvTypeName = CPPU_CURRENT_ LANGUAGE BINDING_NAME;

}
/

*

for each supp
@param pServi
* @param pRegis
&/

EE

extern "C" sal Bool SAL CALL component writeInfo(void * pServiceManager, void * pRegistryKey)

sal Bool res

if (pRegistr
try {

orted service.
ceManager the
tryKey the

ult = sal False;

yKey) {

service manager
registry key

Reference< XRegistryKey > xNewKey (
reinterpret cast< XRegistryKey * >(pRegistryKey)->createKey (

OUString(RTL_CONSTASCII_ USTRINGPARAM("/" IMPLEMENTATION NAME "/UNO/SERVICES"))

This function creates an implementation section in the registry and another subkey

const Sequence< OUString > & rSNL = Addon_getSupportedServiceNames () ;

const OUString * pArray =

for

retu

}

catch

(sal_Int32 nPos

= rSNL.getLength() ;

xNewKey->createKey (pArray[nPos]);

rn sal_ True;

(InvalidRegistryException &) {

// we should not ignore exceptions

}
}

return resul

*

@param pImplN

EOE

@param pRegis

ti

ame name o

@param pServiceManager a service manager,
the registry key for this component,

tryKey

* @return a component factory

&/

f implementation

rSNL.getConstArray () ;
nPos--;

)

This function is called to get service factories for an implementation.

need for component creation

need for persistent data

extern "C" void * SAL CALL component getFactory(const sal_ Char * pImplName,

void * p
void * pRet

if (rtl_str compare(pImplName,

ServiceManager,
= 0;

void * pRegistryKey) {

IMPLEMENTATION NAME)

)

{

Reference< XSingleServiceFactory > xFactory (createSingleFactory (
reinterpret cast< XMultiServiceFactory * >(pServiceManager),
OUString (RTL_CONSTASCII_USTRINGPARAM (IMPLEMENTATION_ NAME)),
Addon_createlInstance,
Addon_getSupportedServiceNames()));

if (xFac
xFac
pRet

}

return pRet;

tory.is()) {
tory->acquire () ;
= xFactory.get (

)i

279

[/ EE R
//#### Helper functions for the implementation of UNO component interfaces ##########H#FFHHHFFESHHHH
[/ EE AR AR R R R R R R R R R R R R R R R R R

::rtl::0UString Addon getImplementationName ()
throw (RuntimeException) ({

return ::rtl::0UString (RTL CONSTASCII USTRINGPARAM (IMPLEMENTATION NAME));
}

sal Bool SAL CALL Addon_supportsService(const ::rtl::0UStringé& ServiceName)
throw (RuntimeException)
{
return ServiceName.equalsAsciiL(RTL CONSTASCII STRINGPARAM (SERVICE NAME));
}

Sequence< ::rtl::0UString > SAL CALL Addon getSupportedServiceNames (
throw (RuntimeException)
{
Sequence < ::rtl::0UString > aRet (1) ;
::rtl::0UString* pArray = aRet.getArray();
pArray[0] = ::rtl::0UString (RTL_CONSTASCII_USTRINGPARAM (SERVICE NAME));
return aRet;

}

Reference< XInterface > SAL CALL Addon_createInstance(const Reference< XMultiServiceFactory > & rSMgr)
throw(Exception)

{
return (cppu::OWeakObject*) new Addon(rSMgr) ;

}

The C++ protocol handler in the example has the implementation name
org.openoffice.Office.addon.example. It supports the URL protocol schema
org.openoffice.Office.addon.example: and provides three different URL commands: Functionl,
Function2 and Help.

The protocol handler implements the com.sun.star. frame.XDispatch interface, so it can return a
reference to itself when it is queried for a dispatch object that matches the given URL.

The implementation of the dispatch () method below shows how the supported commands are
routed inside the protocol handler. Based on the path part of the URL, a simple message box
displays which function has been called. The message box is implemented using the UNO toolkit
and uses the container windows of the given frame as parent window.

#ifndef _Addon_ HXX

#include <addon.hxx>

#endif

#ifndef _OSL_DIAGNOSE_H_

#include <osl/diagnose.h>

#endif

#ifndef RTL_USTRING_HXX

#include <rtl/ustring.hxx>

#endif

#ifndef _COM SUN_STAR_LANG XMULTISERVICEFACTORY HPP
#include <com/sun/star/lang/XMultiServiceFactory.hpp>
#endif

#ifndef COM SUN STAR BEANS PROPERTYVALUE HPP
#include <com/sun/star/beans/PropertyValue.hpp>
#endif

#ifndef COM SUN STAR FRAME XFRAME HPP
#include <com/sun/star/frame/XFrame.hpp>

#endif

#ifndef COM SUN STAR FRAME XCONTROLLER HPP
#include <com/sun/star/frame/XController.hpp>
#endif

#ifndef COM SUN STAR AWT XTOOLKIT HPP
#include <com/sun/star/awt/XToolkit.hpp>

#endif

#ifndef _COM_SUN_STAR_AWT XWINDOWPEER HPP_
#include <com/sun/star/awt/XWindowPeer.hpp>
#endif

#ifndef COM SUN STAR AWT WINDOWATTRIBUTE HPP
#include <com/sun/star/awt/WindowAttribute.hpp>
#endif

#ifndef COM_SUN_STAR AWT XMESSAGEBOX_ HPP_
#include <com/sun/star/awt/XMessageBox.hpp>
#endif

using rtl::0UString;

using namespace com::sun::star::uno;

using namespace com::sun::star::frame;

using namespace com::sun::star::awt;

using com::sun::star::lang::XMultiServiceFactory;

280 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html

using com::sun::star::beans: :PropertyValue;
using com::sun::star::util::URL;

// This is the service name an Add-On has to implement
#define SERVICE NAME "com.sun.star.frame.ProtocolHandler"

/**
* Show a message box with the UNO based toolkit
Y

static void ShowMessageBox (const Reference< XToolkit >& rToolkit, const Reference< XFrame >& rFrame,

const OUString& aTitle, const OUStringé& aMsgText)

{
if (rFrame.is() && rToolkit.is())

{

// describe window properties.

WindowDescriptor aDescriptor;
aDescriptor.Type = WindowClass_MODALTOP 8
aDescriptor.WindowServiceName = OUString(RTL_CONSTASCII_USTRINGPARAM("infobox"));
aDescriptor.ParentIndex = -1 8
aDescriptor.Parent = Reference< XWindowPeer >(rFrame->getContainerWindow (),
UNO_QUERY) g
aDescriptor.Bounds = Rectangle (0,0,300,200) 8
aDescriptor.WindowAttributes = WindowAttribute::BORDER |

WindowAttribute: :MOVEABLE |
WindowAttribute: : CLOSEABLE;

Reference< XWindowPeer > xPeer = rToolkit->createWindow(aDescriptor);
if (xPeer.is())
{
Reference< XMessageBox > xMsgBox(xPeer, UNO_QUERY) ;
if (xMsgBox.is())
{
xMsgBox->setCaptionText (aTitle);
xXMsgBox->setMessageText (aMsgText);
xMsgBox->execute () ;

}

[/ R R R R
//#### Implementation of the ProtocolHandler and Dispatch Interfaces fEEE SIS LT
WA

// XInitialization
/**
* Called by the Office framework.
* We store the context information
* given, like the frame we are bound to, into our members.
Y
void SAL_CALL Addon::initialize(const Sequence< Any >& aArguments) throw (Exception,
RuntimeException)
{
Reference < XFrame > xFrame;
if (aArguments.getLength())
{
aArguments[0] >>= xFrame;
mxFrame = xFrame;

}

// Create the toolkit to have access to it later
mxToolkit = Reference< XToolkit >(mxMSF->createInstance (
OUString(RTL_CONSTASCII_USTRINGPARAM (
"com.sun.star.awt.Toolkit"))), UNO_QUERY);

}

// XDispatchProvider

/**
* Called by the Office framework.
* We are ask to query the given URL and return a dispatch object if the URL
* contains an Add-On command.

Y

Reference< XDispatch > SAL_CALL Addon::queryDispatch(const URL& aURL, const ::rtl::0UStringé&

sTargetFrameName, sal Int32 nSearchFlags)
throw (RuntimeException)
{
Reference < XDispatch > xRet;
if (aURL.Protocol.compareToAscii ("org.openoffice.Office.addon.example:") ==)

{

if (aURL.Path.compareToAscii("Functionl") == 0)
xRet = this;

else if (aURL.Path.compareToAscii ("Function2") == 0)
xRet = this;

else if (aURL.Path.compareToAscii("Help") == 0)

xRet = this;

281

282

return xRet;

}

Jx*
* Called by the Office framework.
* We are ask to query the given sequence of URLs and return dispatch objects if the URLs
* contain Add-On commands.
*/
Sequence < Reference< XDispatch > > SAL CALL Addon::queryDispatches (
const Sequence < DispatchDescriptor >& segDescripts)
throw(RuntimeException)

sal_Int32 nCount = seqgDescripts.getLength();
Sequence < Reference < XDispatch > > 1Dispatcher(nCount);

for(sal Int32 i=0; i<nCount; ++i)
1Dispatcher[i] = queryDispatch(segDescripts[i].FeatureURL, seqgDescripts[i].FrameName,
seqgDescripts[i] .SearchFlags);

return lDispatcher;

}

// XDispatch
/**
* Called by the Office framework.
* We are ask to execute the given Add-On command URL.

*/
void SAL_CALL Addon::dispatch(const URL& aURL, const Sequence < PropertyValue >& lArgs) throw
(RuntimeException)
{
if (aURL.Protocol.compareToAscii ("org.openoffice.Office.addon.example:") == 0)
{
if (aURL.Path.compareToAscii("Functionl") == 0)

{
ShowMessageBox (mxToolkit, mxFrame,
OUString (RTL CONSTASCII USTRINGPARAM("SDK Add-On example")),

OUString (RTL_CONSTASCII_USTRINGPARAM("Function 1 activated")));

}
else if (aURL.Path.compareToAscii("Function2") == 0
{
ShowMessageBox (mxToolkit, mxFrame,
OUString (RTL CONSTASCII USTRINGPARAM("SDK Add-On example")),

OUString (RTL_CONSTASCII_USTRINGPARAM("Function 2 activated")));

}
else if (aURL.Path.compareToAscii("Help") == 0
{
// Show info box
ShowMessageBox (mxToolkit, mxFrame,
OUString (RTL_CONSTASCII_USTRINGPARAM("About SDK Add-On example"

OUString (RTL_CONSTASCII_USTRINGPARAM("This is the SDK Add-On example")));

}
/*k
* Called by the Office framework.
* We are asked to store a status listener for the given URL.

*/

void SAL_CALL Addon::addStatusListener(const Reference< XStatusListener >& xControl, const URL& aURL

throw (RuntimeException)
{
}

/**
* Called by the Office framework.
* We are asked to remove a status listener for the given URL.
*/
void SAL_CALL Addon::removeStatusListener (const Reference< XStatusListener >& xControl,
const URL& aURL)
throw (RuntimeException)
{
}

[/ R R AR ERE R R R AR R
//#### Implementation of the recommended/mandatory interfaces of a UNO component ######4#### 4 ### 444
[/ R R R R R R R R R R R R R

// XServiceInfo

::rtl::0UString SAL_CALL Addon::getImplementationName()
throw (RuntimeException)

{
return Addon_getImplementationName () ;

}

sal Bool SAL CALL Addon::supportsService(const ::rtl::0UString& rServiceName)
throw (RuntimeException)

{

OpenOffice.org 2.3 Developer's Guide « June 2007

;

;

)) .

)

return Addon_supportsService(rServiceName) ;

}

Sequence< ::rtl::0UString > SAL CALL Addon::getSupportedServiceNames()
throw (RuntimeException)
{
return Addon_getSupportedServiceNames () ;

}

Configuration

A protocol handler needs configuration entries, which provide the framework with the necessary
information to find the handler. The schema of the configuration branch org.openoffice. Office.Proto-
colHandler defines how to bind handler instances to their URL schemas:

<?xml version="1.0" encoding="UTF-8"?2>
<!DOCTYPE oor:component-schema SYSTEM "../../../../component-schema.dtd">
<oor:component-schema xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
oor:name="ProtocolHandler" oor:package="org.openoffice.Office" xml:lang="en-US">
<templates>
<group oor:name="Handler">
<prop oor:name="Protocols" oor:type="oor:string-list"/>
</group>
</templates>
<component>
<set oor:name="HandlerSet" oor:node-type="Handler"/>
</component>
</oor:component-schema>

Each set node entry specifies one protocol handler, using its UNO implementation name. The only
property it has is the Protocols item. Its type must be [string-1ist] and it contains a list of URL

schemas bound to the handler. Wildcards are allowed, otherwise the entire string must match the
dispatched URL.

Configuration for vnd.sun.star.framework.ExampleHandler

The following example ProtocolHandler.xcu contains the protocol handler configuration for the
example’s Java protocol handler:

<?xml version='1l.0' encoding='UTF-8'?2>
<oor:component-data oor:name="ProtocolHandler" oor:package="org.openoffice.Office"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<node oor:name="HandlerSet">
<node oor:name="vnd.sun.star.framework.ExampleHandler" oor:op="replace">
<prop oor:name="Protocols">
<value>myProtocol 1://* myProtocol 2://*</value>
</prop>
</node>
</node>
</oor:component-data>

The example adds two new URL protocols using wildcards:

myProtocol 1://*

myProtocol 2://*

Both protocols are bound to the handler implementation vnd. sun.star. framework.ExampleHan-
dler. Note that this must be the implementation name of the handler, not the name of the service
com.sun.star.frame.ProtocolHandler it implements. Because all implementations of the
service com.sun.star.frame.ProtocolHandler share the same UNO service name, you cannot
use this name in the configuration files.

To prevent ambiguous implementation names, the following naming schema for implementation
names is frequently used:

vnd.<namespace of company>.<namespace of implementation>.<class name>

283

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/ProtocolHandler.html

e.g.vnd.sun.star.framework.ExampleHandler

<namespace of company> = sun.star
<namespace of implementation> = framework

<class name> ExampleHandler

An alternative would be the naming convention proposed in 4.4.3 Writing UNO Components - Core
Interfaces to Implement - XServicelnfo:

<namespace_ of creator>.comp.<namespace of implementation>.<class name>
€.g. org.openoffice.comp. framework.OProtocolHandler
All of these conventions are proposals; what matters is:

- use the implementation name in the configuration file, not the general service name
"com.sun.star.frame.ProtocolHandler"

- be careful to choose an implementation name that is likely to be unique, and be aware that your
handler ceases to function when another developer adds a handler with the same name.

Configuration for org.openoffice.Office.addon.example

The following ProtocolHandler.xcu file configures the example’s C++ protocol handler with the
implementation name org.openoffice.Office.addon.example in the configuration branch
org.openoffice.Office. ProtocolHandler followingthe same schema.

<?xml version="1.0" encoding="UTF-8"?2>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" oor:name="ProtocolHandler"
oor:package="org.openoffice.0ffice">
<node oor:name="HandlerSet">
<node oor:name="org.openoffice.Office.addon.example" oor:op="replace">
<prop oor:name="Protocols" oor:type="oor:string-list">
<value>org.openoffice.Office.addon.example: *</value>
</prop>
</node>
</node>
</oor:component-data>

The configuration adds one new URL protocol using wildcards:

org.openoffice.0Office.addon.example:*
Based on this URL protocol, the C++ protocol handler can route, for example, a dispatched URL
org.openoffice.Office.addon.example:Functionl

to the corresponding target routine. See the implementation of the dispatch () method in the
XDispatch interface of the C++ source fragment above.

Installation

When the office finds a protocol handler implementation for a URL in the configuration files, it
asks the global service manager to instantiate that implementation. All components must be regis-
tered with the service manager before they can be instantiated. This happens automatically when
an extension is being installed (see chapter 5 Extensions).

The easiest method to configure and register a new protocol handler in a single step is therefore to
use the Extension Manager. An extension for the example protocol handler could contain the
following directory structure:

ExampleHandler.oxt:
META-INF/manifest.xml
ProtocolHandler.xcu
windows.plt/

examplehandler.dll
solaris sparc.plt/

284 OpenOffice.org 2.3 Developer's Guide « June 2007

libexamplehandler.so
linux x86.plt/
lfbexamplehandler.so
The .xcu file can go directly into the root of the extension, the shared libraries for the various plat-
forms go to their respective .plt directories. Both the .xcu and the libraries have to be referenced in
the manifest.xml

The package installation is as simple as changing to the <OfficePath>/program directory with a
command-line shell and running

$ unopkg add /foo/bar/ExampleHandler.oxt
or simply starting the Extension Manager in your office to install the extensions via the Ul

For an detailedexplanation of the extension structure please refer to 5 Extensions.

4.7.2 Jobs

Overview

A job in OpenOffice.org is a UNO component that can be executed by the job execution environ-
ment upon an event. It can read and write its own set of configuration data in the configuration
branch org.openoffice.Office.Jobs, and it can be activated and deactivated from a certain point in time
using special time stamps. It may be started with or without an environment, and it is protected
against termination and lifetime issues.

The event that starts a job can be triggered by:

any code in OpenOffice.org that detects a defined state at runtime and passes an event string to
the service com.sun.star.task.JobExecutor through its interface method
com.sun.star.task.XJobExecutor:trigger (). The job executor looks in the configuration of
OpenOffice.org if there are any jobs registered for this event and executes them.

the global document event broadcaster

the dispatch framework, which provides for a vnd.star.sun.job: URL schema to start jobs using a
command URL. This URL schema can execute jobs in three different ways: it can issue an event
for job components that are configured to wait for it, it can call a component by an alias that has
been given to the component in the configuration or it can execute a job component directly by
its implementation name.

If you call trigger () at the job executor or employ the global event broadcaster, the office needs a
valid set of configuration data for every job you want to run. The third approach, to use a
vnd.star.sun.job: command URL, works with or without prior configuration.

Ilustration 4.4 shows an example job that counts how many times it has been triggered by an event
and deactivates itself when it has been executed twice. It uses its own job-specific configuration
layer to store the number of times it has been invoked. This value is passed to each newly created
job instance as an initialization argument, and can be checked and written back to the configura-
tion. When the counter exceeds two, the job uses the special deactivation feature of the job execu-
tion environment. Each job can have a user time stamp and and administrator time stamp to
control activation and deactivation. When a job is deactivated, the execution environment updates
the user time stamp value, so that subsequent events do not start this job again. It can be enabled
by a newer time stamp value in the administration layer.

285

http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobExecutor.html#trigger
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobExecutor.html#trigger
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobExecutor.html#trigger
http://api.openoffice.org/docs/common/ref/com/sun/star/task/JobExecutor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/JobExecutor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/JobExecutor.html

any Job ; Service
code Executor Configuration Manager Job

trigger (event1) Y] search registered iob\
7 7
create job instance N |:I create N
- - ;fc)(unt: |obC)onfig[n]
; if (count==1,
execute job N save arguments
7 (++count)
e save arguments (count)
~N
save arguments X
(count) e
Vd
trigger (eventi) S search registered iob\
e 7
create job instance N create N
7 7
execute job N fff’(légf]?{gligsﬂfig[“]
7 deactivate
pd deactivate
~N
. N\
set UserTime=now e
/
trigger (event1) N search registered job\
7 7
disabled! '

Hllustration 4.5: Flow diagram of an example job

Execution Environment

Jobs are executed in a job execution environment, which handles a number of tasks and problems
that can occur when jobs are executed. In particular,

it initializes the job with all necessary data

it starts the job using the correct interfaces

it keeps the job alive by acquiring a UNO reference

it waits until the job finishes its work, including listening for asynchronous jobs
it updates the configuration of a job after it has finished

it informs listeners about the execution

it protects the job from office termination, or informs it when it is impossible to veto termination

286 OpenOffice.org 2.3 Developer's Guide « June 2007

For this purpose, the job execution environment creates special wrapper objects for jobs. This
wrapper object implements mechanisms to support lifetime control. The wrapper vetoes termina-
tion of the com.sun.star. frame.Desktop and the closing of frames that contain document models
as long as there are dependent active jobs. It might also register as a
com.sun.star.util.XCloseListener ata com.sun.star.frame.Frame Or com.sun.star.docu-
ment.OfficeDocument to handle the close communication on behalf of the job. It also listens for
asynchronous job instances, and it is responsible for updates to the configuration data after a job
has finished (see 4.7.2 Writing UNO Components - Integrating Components into OpenOffice.org - Jobs -
Returning Results).

A central problem of external components in OpenOffice.org is their lifetime control. Every
external component must deal with the possibility that the environment will terminate. It is not
efficient to implement lifetime strategies in every job, so the job execution environment takes care
of this problem. That way, a job can execute, while difficult situations are handled by the execution
environment.

Another advantage of this approach is that it ensures future compatibility. If the mechanism
changes in the future, termination is detected and prevented, and it is unnecessary to adapt every
existing job implementation.

Implementation

A job must implement the service com.sun.star. task.Job if it needs to block the thread in which
it is executed or com.sun.star.task.AsyncJob if the current state of the office is unimportant for
the job. The service that a job implementation supports is detected at runtime. If both are available,
the synchronous service com. sun.star.task.Job is preferred by the job execution environment.

287

http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Frame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html

com.sun.star.task. com.sun.star.task.XJobExecutor

JobExecutor - -
<<services> trigger (string Event)
|]
| [}
I I
ol Handlel |] stene
fo | | at Gl l
nd.sun.star.jobs:URI | ! nt Broa
| [}
Lo
) | ! i |
: 1 | ! : 1
)]] ! | 1
1]] ! ' 1
) |] ! ' 1
——— | rmm——- dmmal e 1
0 ! 1
0! ! 1
! ! 1
_____ o --------
1 |
[})
[})
[} }
[} }
[})
| B, _>
| | com.sun.star.task. com.sun.star.task.XAsyncjob
| | Asyncjob
|) X void executeAsync(
| Fm———- -> csservice>> sequence< ::com::sun::star::beans:
| | :NamedValue > Arguments,
| | com.sun.star.task.X]obListener
[}] Listener)
[} }
[})
| _>
| com.sun.star.task. com.sun.star.task.XJob
| Job
] . any execute(
e <<service>>
> sequence< ::com::sun::star::beans:
:NamedValue > Arguments)

Hllustration 4.6: Job framework

A synchronous job must not make assumptions about the environment, neither that it is the only
job that runs currently nor that another object waits for its results. Only the thread context of a
synchronous job is blocked until the job finishes its work.

An asynchronous job is not allowed to use threads internally, because OpenOffice.org needs to
control thread creation. How asynchronous jobs are executed is an implementation detail of the
global job execution environment.

Jobs that need a user interface must proceed with care, so that they do not interfere with the
message loop of OpenOffice.org. The following rules apply:

You cannot display any user interface from a synchronous job, because repaint errors and other
threading issues will occur.

The easiest way to have a user interface for an asynchronous job is to use a non-modal dialog. If
you need a modal dialog to get user input, problems can occur. The best way is to use the frame
reference that is part of the job environment initialization data, and to get its container window
as a parent window. This parent window can be used to create a dialog with the user interface
toolkit com. sun.star.awt.Toolkit. The C++ protocol handler discussed in 4.7.1 Writing UNO
Components - Integrating Components into OpenOffice.org - Protocol Handler - Implementation shows
how a modal message box uses this approach.

Using a native toolkit or the Java AWT for your GUI can lead to a non-painting OpenOffice.org.
To avoid this, the user interface must be non-modal and the implementation must allow the
office to abort the job by supporting com. sun.star.lang.XComponent or
com.sun.star.util.XCloseable.

288 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Toolkit.html

The optional interfaces com.sun.star.lang.XComponent Or com.sun.star.util.XCloseable
should be supported so that jobs can be disposed of in a controlled manner. When these interfaces
are present, the execution environment can call dispose () or close () rather than waiting for a job
to finish. Otherwise OpenOffice.org must wait until the job is done. Invisible jobs can be especially
problematic, because they cannot be recognized as the reason why OpenOffice.org refuses to exit.

Initialization

A job is initialized by a call to its main interface method, which starts the job. For synchronous jobs,
the execution environment calls com.sun.star.task.XJob:execute (), Whereas asynchronous
jobs are run through com. sun.star.task.XAsyncJob:executeAsync ().

Both methods take one parameter Arguments, which is a sequence of
com.sun.star.beans.NamedValue structs. This sequence describes the job context.

It contains the environment where the job is running, which tells if the job was called by the job
executor, the dispatch framework or the global event broadcaster service, and possibly provides a
frame or a document model for the job to work with.

Section 4.7.1 Writing UNO Components - Integrating Components into OpenOffice.org - Protocol Handler - Imple-
mentation shows how to use a frame to get its associated document model.

The Arguments parameter also yields configuration data, if the job has been configured in the
configuration branch org.openoffice.Office.Jobs. This data is separated into basic configuration and
additional arguments stored in the configuration. The job configuration is described in section 4.7.2
Writing UNO Components - Integrating Components into OpenOffice.org - Jobs - Configuration.

Finally, Arguments can contain dynamic parameters given to the job at runtime. For instance, if a job
has been called by the dispatch framework, and the dispatched command URL used parameters,
these parameters can be passed on to the job through the execution arguments.

The following table shows the exact specification for the execution Arguments:

Elements of the Execution Arguments Sequence

Environment | sequence< com.sun.star.beans.NamedValue >. Contains environment data. The following
named values are defined:

EnvType string. Determines in which environment a job is executed. Defined Values:
"EXECUTOR" : job has been executed by a call to trigger () at the job exec-
utor
"DISPATCH": job is dispatched as vnd.sun.star.job: URL
"DOCUMENTEVENT" : job has been executed by the global event broadcaster
mechanism

Event- [optional] string. Only exists, if EnvType is "EXECUTOR" or "DOCUMENTE-

Name VENT". Contains the name of the event for which this job was registered in
configuration. During runtime, this information can be used to handle different
function sets by the same component implementation.

Frame [optional] com.sun.star.frame.XFrame. Only exists, if EnvType is "DISPATCH".
Contains the frame context of this job. Furthermore, the sub list DynamicData
can contain the optional argument list of the corresponding
com.sun.star.frame.XDispatch:dispatch () request.

Model [optional] com.sun.star.frame.XModel. Only exists, if EnvType is "DOCUMENT -
EVENT". Contains the document model that can be used by the job.

289

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html#dispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html#dispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html#dispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XFrame.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XAsyncJob.html#executeAsync
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XAsyncJob.html#executeAsync
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XAsyncJob.html#executeAsync
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/XCloseable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XComponent.html

290

Elements of the Execution Arguments Sequence

Config

JobCon

fig

DynamicData

[optional] [sequence< com.sun.star.beans.NamedValue >]. Contains the generic set of job
configuration properties as described in 4.7.2 Writing UNO Components - Integrating Compo-
nents into OpenOffice.org - Jobs - Configuration but not the job specific data set. That is, this
sub list only includes the properties Alias and Service, not the property Arguments.
The property Arguments is reflected in the element JobConfig (see next element below)
Note: this sub list only exists if the job is configured with this data.

Alias string. This property is declared as the name of the corresponding set node in
the configuration set Jobs. It must be a unique name, which represents the
structured information of a job.

Service string. Represents the UNO implementation name of the job component.

[optional] [sequence< com.sun.star.beans.NamedValue >]

This sub list contains the job-specific set of configuration data as specified in the Argu-
ments property of the job configuration. Its items depend on the job implementation.
Note: this sub list only exists if the job is configured with this data.

[optional] [sequence< com.sun.star.beans.NamedValue >]. Contains optional parameters of
the call that started the execution of this job. In particular, it can include the parameters of
acom.sun.star.frame.XDispatch:dispatch () request, if Environment-EnvType
is "DISPATCH"

The following example shows how a job can analyze the given arguments and how the environ-
ment in which the job is executed can be detected:

public synchronized java.lang.Object execute (com.sun.star.beans.NamedValue[] lArgs)
throws com.sun.star.lang.IllegalArgumentException, com.sun.star.uno.Exception {

// extract all possible sub list of given argument list

com.
com.
com.
com.

int
for

sun

c =

sun.
.star
sun.
sun.

star

star
star

1Arg

.beans.NamedValue[] lGenericConfig = null;
.beans.NamedValue[] lJobConfig = null;
.beans.NamedValue[] lEnvironment = null;
.beans.NamedValue[] lDispatchArgs = null;
s.length;

(int 1=0; i<c; ++1i) {

if
1Gen
else
if (
else
detected™);

}

(1Args[i] .Name.equals ("Config"))

ericConfig = (com.sun.star.beans.NamedValue[])
com.sun.star.uno.AnyConverter.toArray (lArgs[i] .Value) ;

1Args[i] .Name.equals ("JobConfig")
1JobConfig = (com.sun.star.beans.NamedValuel[])
com.sun.star.uno.AnyConverter.toArray (1Args[i] .Value) ;

if (lArgs[i] .Name.equals ("Environment"))
lEnvironment = (com.sun.star.beans.NamedValuel[])
com.sun.star.uno.AnyConverter.toArray (1lArgs[i].Value) ;

else
if (lArgs[i].Name.equals ("DynamicData"))
1DispatchArgs = (com.sun.star.beans.NamedValuel[])
com.sun.star.uno.AnyConverter.toArray (1Args[i].Value);
else

// It is not realy an error - because unknown items can be ignored
throw new com.sun.star.lang.IllegalArgumentException ("unknown sub list

// Analyze the environment info. This sub list is the only guarenteed one!

if (lEnvironment==null)
throw new com.sun.star.lang.IllegalArgumentException("no environment");
java.lang.String sEnvType = null;
java.lang.String sEventName = null;
com.sun.star.frame.XFrame xFrame = null;
com.sun.star.frame.XModel xModel = null;

lEnvironment.length;

(int i=0; i<c; ++i) {
if (lEnvironment[i].Name.equals ("EnvType"))
sEnvType = com.sun.star.uno.AnyConverter.toString (lEnvironment[i].Value) ;
else
if (lEnvironment[i].Name.equals ("EventName"))
sEventName = com.sun.star.uno.AnyConverter.toString (lEnvironment[i].Value) ;
else

if (lEnvironment([i].Name.equals ("Frame"))

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html#dispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html#dispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XDispatch.html#dispatch
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html

xFrame = (com.sun.star.frame.XFrame)com.sun.star.uno.AnyConverter.toObject (
new com.sun.star.uno.Type (com.sun.star.frame.XFrame.class),
lEnvironment [i] .Value) ;
else
if (lEnvironment[i].Name.equals ("Model"))
xModel = (com.sun.star.frame.XModel)com.sun.star.uno.AnyConverter.toObject (
new com.sun.star.uno.Type (com.sun.star.frame.XModel.class),
lEnvironment [i] .Value) ;

}

// Further the environment property "EnvType" is required as minimum.
if (

(sEnvType==null) ||

(

(!sEnvType.equals ("EXECUTOR")) &&
(!sEnvType.equals ("DISPATCH")
(!sEnvType.equals ("DOCUMENTEVENT")
)
)

3
2

{
throw new com.sun.star.lang.IllegalArgumentException ("no valid value for EnvType");

}

// Analyze the set of shared config data.
java.lang.String sAlias = null;
if (lGenericConfig!=null) {
c = lGenericConfig.length;
for (int i=0; i<c; ++1i) {
if (lGenericConfig[i] .Name.equals ("Alias"))
sAlias = com.sun.star.uno.AnyConverter.toString (lGenericConfig[i].Value) ;

Returning Results

Once a synchronous job has finished its work, it returns its result using the any return value of the
com.sun.star.task.XJob:execute () method. An asynchronous jobs send back the result
through the callback method jobFinished () toits com.sun.star.task.XJobListener. The
returned any parameter must contain a sequence< com.sun.star.beans.Namedvalue > with the
following elements:

Elements of the Job Return Value

Deactivate boolean. Asks the job executor to disable a job from further execution. Note that
this feature is only available if the next event is triggered by the job executor or the
event broadcaster. If it comes, for example, from the dispatch framework using an
URL with an <alias> argument, the deactivation will be ignored.

This value should be used carefully if the Environment-EnvType is
"DISPATCH", because users will be irritated if clicking a Ul element, such as an
Add-On menu entry, has no effect.

SaveArguments sequence< com.sun.star.beans.NamedValue >. Must contain a list of job specific
data, which are written directly to the Arguments list into the job configuration.
Note: Merging is not supported. The list must be complete and replaces all values
in the configuration. The necessary data can be copied and adjusted from the
JobConfig element of the execution arguments.

SendDispatchResult | com.sun.star.frame.DispatchResultEvent. If a job is designed to be usable in the
dispatch framework, this contains a struct, which is send to all interested dispatch
result listeners.

Tip: This value should be omitted if Environment-EnvType is not "DISPATCH".

201

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/DispatchResultEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/DispatchResultEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/DispatchResultEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/NamedValue.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html#execute
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html#execute

Configuration

Although jobs that are called through a vnd.sun.star.jobs: URL by their implementation name do not
require it, a job usually has configuration data. The configuration package org.openoffice.Office.Jobs
contains all necessary information:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE oor:component-schema SYSTEM "../../../../component-schema.dtd">
<oor:component-schema xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
oor:name="Jobs" oor:package="org.openoffice.Office" xml:lang="en-US">
<templates>
<group oor:name="Job">
<prop oor:name="Service" oor:type="xs:string"/>
<group oor:name="Arguments" oor:extensible="true"/>
</group>
<group oor:name="TimeStamp">
<prop oor:name="AdminTime" oor:type="xs:string"/>
<prop oor:name="UserTime" oor:type="xs:string"/>
</group>
<group oor:name="Event">
<set oor:name="JobList" oor:node-type="TimeStamp"/>
</group>
</templates>
<component>
<set oor:name="Jobs" ocor:node-type="Job"/>
<set oor:name="Events" oor:node-type="Event"/>
</component>
</oor:component-schema>

The Job template contains all properties that describe a job component. Instances of this template
are located inside the configuration set Jobs.

Properties of the Job template

Alias string. This property is declared as the name of the corresponding set node inside the configu-
ration set Jobs. It must be a unique name, which represents the structured information of a
job. In the example .xcu file below its value is "SyncJob". In the job execution arguments this
property is passed as Config - Alias

Service string. Represents the UNO implementation name of the job component. In the job execution
arguments this property is passed as Config - Service

Arguments set of any entries. This list can be filled with any values and represents the private set of
configuration data for this job. In the job execution arguments this property is passed as
JobConfig

The job property Alias was created to provide you with more flexibility for a developing compo-
nents. You can use the same UNO implementation, but register it with different Aliases. At
runtime the job instance will be initialized with its own configuration data and can detect which
representation is used.

" You cannot use the generic UNO service names com. sun.star.task.Job or

@ com.sun.star.task.AsyncJob for the Service job property, because the job executor cannot identify
the correct job implementation. To avoid ambiguities, it is necessary to use the UNO implementation name
of the component.

Every job instance can be bound to multiple events. An event indicates a special office state, which
can be detected at runtime (for example, OnFirstvisibleTask), and which can be triggered by a
call to the job executor when the first document window is displayed.

292 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html

Properties of the Event template

EventName string. This property is declared as the name of the corresponding set node inside the configu-
ration set Events. It must be a unique name, which describes a functional state. In the example
.xcu file below its value is "onFirstVisibleTask".

Section 4.7.2 Writing UNO Components - Integrating Components into OpenOfffice.org - Jobs - List of
Supported Events summarizes the events currently triggered by the office. In addition, devel-
opers can use arbitrary event strings with the vnd.sun.star.jobs: URL or in calls to trigger () at
the com.sun.star.task.JobExecutor service.

JobList set of TimeStamp entries. This set contains a list of all A1ias names of jobs that are bound to
this event. Every job registration can be combined with time stamp values. Please refer to the
description of the template TimeStamp below for details

As an optional feature, every job registration that is bound to an event can be enabled or disabled
by two time stamp values. In a shared installation of OpenOffice.org, an administrator can use the
AdminTime value to reactivate jobs for every newly started user office instance; regardless of earlier
executions of these jobs. That can be useful, for example, for updating user installations if new
functions have been added to the shared installation.

Properties of the TimeStamp template

AdminTime gtring. This value must be formatted according to the ISO 8601. It contains the time stamp,
which can only be adjusted by an administrator, to reactivate this job.

UserTime gtring. This value must be formatted according to the ISO 8601. It contains the time, when this
job was finished successfully last time upon the configured event.

Using this time stamp feature can sometimes be complicated. For example, assume that there is a
job that was installed using the Extension Manager. The job is enabled for a registered event by
default, but after the first execution it is disabled. By default, both values (AdminTime and User-
Time) do not exist for a configured event. A Jobs.xcu fragment, as part of the extension, must also
not contain the AdminTime and UserTime entries. Because both values are not there, no check can
be made and the job is enabled. A job can be deactivated by the global job executor once it has
finished its work successfully (depending on the Deactivate return value). In that case, the User-
Time entry is generated and set to the current time. An administrator can set a newer and valid
AdminTime value in order to reactivate the job again, or the user can remove his UserTime entry
manually from the configuration file of the user installation.

The following Jobs.xcu file shows an example job configuration:

<?xml version="1.0" encoding="UTF-8"?2>
<!DOCTYPE oor:component-data SYSTEM "../../../../component-update.dtd">
<oor:component-data oor:name="Jobs" oor:package="org.openoffice.Office"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<node oor:name="Jobs">
<node oor:name="SyncJob" oor:op="replace">
<prop oor:name="Service">
<value>com.sun.star.comp.framework.java.services.SyncJob</value>
</prop>
<node oor:name="Arguments">
<prop oor:name="arg 1” oor:type="xs:string” oor:op="replace">
<value>val 1</value>
</prop>
</node>
</node>
</node>
<node oor:name="Events">
<node oor:name="onFirstVisibleTask" oor:op="fuse">
<node oor:name="JobList">
<node oor:name="SyncJob" oor:op="replace"/>
</node>
</node>
</node>
</oor:component-data>

This example job has the following characteristics:

293

http://api.openoffice.org/docs/common/ref/com/sun/star/task/JobExecutor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/JobExecutor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/JobExecutor.html

Its alias name is "SyncJob"

The UNO implementation name of the component is

com.sun.star.comp.framework.java.services.SyncJob.

The job has its own set of configuration data with one item. It is a string, its name is arg 1 and
its value is "val 1".

The job is bound to the global event onFirstvisibleTask, which is triggered when the first
document window of a new OpenOffice.org instance is displayed. The next execution of this job
is guaranteed, because there are no time stamp values present.

When specifying the event to which the job is bound (onFirstVisibleTask in the above example), it
is important to use oor:op="fuse", so that multiple Jobs.xcu particles merge losslessly. but note that
oor:op="fuse" is only available since OpenOffice.org 2.0.3, and that a Jobs.xcu file that uses it
cannot be used with older versions of OpenOffice.org. With older versions of OpenOffice.org, it
was common to use oor:op="replace" instead of cor:op="fuse", which potentially caused event
bindings to get lost when multiple Jobs.xcu particles were merged.

’ A job is not executed when it has deactivated itself and is called afterwards by a vnd.sun.star.jobs:event=...
@ command URL. This can be confusing to users, especially with add-ons, since it would seem that the
customized Ul items do not function.

Installation

The easiest way to register an external job component is to use the Extension Manager (see chapter
5 Extensions). An extension for the example job of this chapter can have the following directory
structure:

SyncJob.oxt:
META-INF/manifest.xml
Jobs.xcu
windows.plt/

Syncdob. jar

Using the vnd.sun.star.jobs: URL Schema

This section describes the necessary steps to execute a job by issuing a command URL at the
dispatch framework. Based upon the protocol handler mechanism, a specialized URL schema has
been implemented in OpenOffice.org. It is registered for the URL schema
"vnd.sun.star.jobs:*" which uses the following syntax:

vnd.sun.star.jobs: {[event=<name>]}{, [alias=<name>]}{, [service=<name>]}

Elements of a vnd.sun.star.jobs: URL

event=<name> string. Contains an event string, which can also be used as parameter of the interface
method com.sun.star.task.XJobExecutor:trigger ().It corresponds to the
node name of the set Events in the configuration package org.openoffice.Office.Jobs.
Using the event parameter of a vnd. sun.star.jobs: URL will start all jobs that are
registered for this event in the configuration.
Note: Disabled jobs, that is jobs with a user time stamp that is newer than the adminis-
trator time stamp, are not triggered by event URLs.

alias=<name> string. Contains an alias name of a configured job. This name is not used by the job
execution API. It is a node name of the set Jobs in the configuration package
org.openoffice.Office.Jobs . Using the alias part of a vnd.sun.star.jobs: URL only
starts the requested job.

294 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobExecutor.html#trigger
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobExecutor.html#trigger
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJobExecutor.html#trigger

Elements of a vnd.sun.star.jobs: URL

service=<name> giring. Contains the UNO implementation name of a configured or unconfigured

com.sun.star.task.Job or com.sun.star.task.AsyncJob service. It is not necessary that
such jobs are registered in the configuration, provided that they work without configu-
ration data or implements necessary configuration on their own.

It is possible to combine elements so as to start several jobs at once with a single URL. For instance,
you could dispatch a URL vnd.sun.star.jobs:event=el,alias=al event=e2 ,.... However, URLs that start
several jobs at once should be used carefully, since there is no check for double or concurrent
requests. If a service is designed asynchronously, it will be run concurrently with another, synchro-
nous job. If both services work at the same area, there might be race conditions and they must
synchronize their work. The generic job execution mechanism does not provide this functionality.

The following configuration file for the configuration package org.openoffice.Office.Jobs shows two
jobs, which are registered for different events:

<?xml version="1.0" encoding="UTF-8"?2>
<!DOCTYPE oor:component-data SYSTEM "../../../../component-update.dtd">
<oor:component-data oor:name="Jobs" oor:package="org.openoffice.Office"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<node oor:name="Jobs">
<node oor:name="Job 1" oor:op="replace">
<prop oor:name="Service">
<value>vnd.sun.star.jobs.Job 1</value>
</prop>
<node oor:name="Arguments">
<prop oor:name="arg 1” oor:type="”xs:string” oor:op="replace">
<value>valil</valae>
</prop>
</node>
</node>
<node oor:name="Job_2" oor:op="replace">
<prop oor:name="Service">
<value>vnd.sun.star.jobs.Job_ 2</value>
</prop>
<node oor:name="Arguments"/>
</node>
</node>
<node oor:name="Events">
<node oor:name="onFirstVisibleTask" oor:op="fuse">
<node oor:name="JobList">
<node oor:name="Job_ 1" oor:op="replace">
<prop oor:name="AdminTime">
<value>01.01.2003/00:00:00</value>
</prop>
<prop oor:name="UserTime">
<value>01.01.2003/00:00:01</value>
</prop>
</node>
<node oor:name="Job 2" oor:op="replace"/>
</node>
</node>
</node>
</oor:component-data>

The first job can be described by the following properties:

Properties of Job_1

alias Job 1

UNO implementation name vnd.sun.star.jobs.Job 1

activation state Disabled for job execution (because its AdminTime is older than its UserTime)
own configuration contains one string item argl with the value "vall"
event registration job is registered for the event string "onFirstVisibleTask"

The second job can be described by these properties:

Properties of Job_2
alias Job 2

295

http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/AsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/Job.html

296

Properties of Job_2

UNO implementation name vnd.sun.star.jobs.Job 2

activation state Enabled for job execution (because it uses default values for AdminTime and
UserTime)

own configuration no own configuration items registered

event registration job is registered for the event string "onFirstVisibleTask"

The following demonstrates use cases for all possible vnd.sun.star.job: URLs. Not all possible
scenarios are shown here. The job dispatch can be used in different ways and the combination of
jobs can produce different results:

vnd.sun.star.jobs:event=onFirstVisibleTask

This URL starts Job 2 only, Job 1 is marked DISABLED, since its AdminTime stamp is older than
its UserTime stamp.

The job is initialized with environment information through the Environment sub list, as shown in
section 4.7.2 Writing UNO Components - Integrating Components into OpenOffice.org - Jobs - Initializa-
tion. Optional dispatch arguments are passed in DynamicData, and generic configuration data,
including the event string, is received in Config. However, it is not initialized with configuration
data of its own in JobConfig because Job_2 is not configured with such information. On the other
hand, Job_2 may return data after finishing its work, which will be written back to the configura-
tion.

Furthermore, the job instance can expect that the Frame property from the Environment sub list
points to the frame in which the dispatch request is to be executed.

vnd.sun.star.jobs:alias=Job 1

This starts Job_1 only. It is initialized with an environment, and optionally initialized with
dispatch arguments, generic configuration data, and configuration data of its own. However, the
event name is not set here because this job was triggered directly, not using an event name.

vnd.sun.star.jobs:service=vnd.sun.star.jobs.Job 3

A vnd.sun.star.jobs.Job 3 isnot registered in the job configuration package. However, if this
implementation was registered with the global service manager, and if it provided the
com.sun.star.task.XJob Or com.sun.star.task.XAsyncJob interfaces, it would be executed by
this URL. If both interfaces are present, the synchronous version is preferred.

The given UNO implementation name vnd.sun.star.jobs.Job_3 is used directly for creation at
the UNO service manager. In addition, this job instance is only initialized with an environment
and possibly with optional dispatch arguments there is no configuration data for the job to use.

List of supported Events

Supported events triggered by code

onFirstRunlnitialization (Called on startup once after OpenOffice.org is installed. Should be used for
post-setup operations.

onFirstVisibleTask Called after a document window has been shown for the first time after
launching the application. Note: The quickstarter influences this behavior.
With the quickstarter, closing the last document does not close the applica-
tion. Opening a new document in this situation does not trigger this event.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/task/XAsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XAsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XAsyncJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html
http://api.openoffice.org/docs/common/ref/com/sun/star/task/XJob.html

‘ Supported events triggered by code

onDocumentOpened

Indicates that a new document was opened. It does not matter if a new or an
existing document was opened. Thus it represents the combined OnNew and
OnLoad events of the global event broadcaster.

‘ Supported events triggered by the global event broadcaster

OnStartApp Application has been started

OnCloseApp Application is going to be closed

OnNew New Document was created

OnLoad Document has been loaded

OnSaveAs Document is going to be saved under a new name
OnSaveAsDone Document was saved under a new name
OnSave Document is going to be saved

OnSaveDone Document was saved

OnPrepareUnload Document is going to be removed

OnUnload Document has been removed

OnFocus Document was activated

OnUnfocus Document was deactivated

OnPrint Document will be printed

OnModifyChange Modified state of the document has changed

Event names are case sensitive.

4.7.3 Add-Ons

A OpenOffice.org add-on is an extension providing one or more functions through the user inter-
face of OpenOffice.org. A typical add-on is available as an extension for easier deployment with
the Extension Manager. An add-on contains configuration files which specify the user interface,
registration for a protocol schema and first-time instantiation.

The Extension Manager merges the configuration files with the menu and toolbar items for an
add-on directly into the OpenOffice.org configuration files.

297

Overview
OpenOffice.org supports the integration of add-ons into the following areas of the GUI

Menu items for add-ons can be added to an Add-Ons submenu of the Tools menu and a corre-
sponding add-ons popup toolbar icon:

Wt Add-Cn example Window Help X

&P Spellcheck... F7 & -0 | BE- Eﬁ@|

Language 3 — —_—
L wwiord Counk E= A

AutoCorreck.. .

Outling Mumbeting. .. P T
I Line Mumbering...

Fooktnotes, .,

Gallery

111 Media Player

Bibliography Database

Mail Merge Wizard. ..

Sork...

Calculate Skrg++ L
Update 3
Macros »

Package Manager...
¥ML Filter Settings. ..
Customize. ..

Options...

Hl] Add-Ons Add-On example » Q Add-On Function 1
Add-On Function 2

Hlustration 4.7: Add-Ons submenu and toolbar popup

It is also possible to create custom menus in the Menu Bar. You are free to choose your own menu
title, and you can create menu items and submenus for your add-on. Custom menus are inserted
between the Tools and Window menus. Separators are supported as well:

Tools Wefalade 5= window Help
IEL II E Add-0n Funckion 1 ﬁ |

Hlustration 4.8: Custom top-level menu

You can create toolbar icons in the Function Bar, which is usually the topmost toolbar. Below you
see two toolbar items, an icon for Function 1 and a text item for Function 2 :

| [LﬁCrJT Q Function 2

T T |- I T- D
Hlustration 4.9: Toolbar icons for Function 1 and
Function 2

The Help menu offers support for add-ons through help menu items that open the online help of
an add-on. They are inserted below the Help - Registration item under a separator.

298 OpenOffice.org 2.3 Developer's Guide « June 2007

Guidelines

For a smooth integration, a developer should be aware of the following guidelines:

Add-Ons Submenu

- Since the Tools - Add-Ons menu is shared by all installed add-ons, an add-on should save
space and use a submenu when it has more than two functions. The name of the add-on should
be part of the menu item names or the submenu title.

- If your add-on has many menu items, use additional submenus to enhance the overview. Use
four to seven entries for a single menu. If you exceed this limit, start creating submenus.

Custom Top-Level Menu

- Only frequently used add-ons or add-ons that offer very important functions in a user environ-
ment should use their own top-level menu.

- Use submenus to enhance the overview. Use four to seven entries for a single menu. If you
exceed this limit, start creating submenus.

- Use the option to group related items by means of separator items.

Toolbar

- Only important functions should be integrated into the toolbar.

- Use the option to group functions by means of separator items.

Add-On Help menu

Every add-on should provide help to user. This help has to be made available through an entry in
the OpenOffice.org Help menu. Every add-on should only use a single Help menu item.

If the add-on comes with its own dialogs, it should also offer Help buttons in the dialogs.

Configuration

The user interface definitions of all add-ons are stored in the special configuration branch
org.openoffice.Office.Addons .

The schema of the configuration branch org.openoffice. Office. Addons specifies how to define a user
interface extension.

<?xml version='1l.0' encoding='UTF-8'?>
<oor:component-schema oor:name="Addons" oor:package="org.openoffice.Office" xml:lang="en-US"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<templates>
<group oor:name="Menultem">
<prop oor:name="URL" oor:type="xs:string"/>
<prop oor:name="Title" oor:type="xs:string" oor:localized="true"/>
<prop oor:name="ImageIdentifier" oor:type="xs:string"/>
<prop oor:name="Target" oor:type="xs:string"/>
<prop oor:name="Context" oor:type="xs:string"/>
<set oor:name="Submenu" oor:node-type="Menultem"/>
</group>
<group oor:name="PopupMenu">
<prop oor:name="Title" oor:type="xs:string" oor:localized="true"/>
<prop oor:name="Context" oor:type="xs:string"/>
<set oor:name="Submenu" oor:node-type="Menultem"/>
</group>
<group oor:name="ToolBarItem">

299

<prop oor:name="URL" oor:type="xs:string"/>
<prop oor:name="Title" oor:type="xs:string" oor:localized="true"/>
<prop oor:name="ImageIdentifier" oor:type="xs:string"/>
<prop oor:name="Target" oor:type="xs:string"/>
<prop oor:name="Context" oor:type="xs:string"/>
</group>
<group oor:name="UserDefinedImages">
<prop oor:name="ImageSmall" oor:type="xs:hexBinary"/>
<prop oor:name="ImageBig" oor:type="xs:hexBinary"/>
<prop oor:name="ImageSmallHC" oor:type="xs:hexBinary"/>
<prop oor:name="ImageBigHC" oor:type="xs:hexBinary"/>
<prop oor:name="ImageSmallURL” oor:type="xs:string”/>
<prop oor:name="ImageBigURL” oor:type="xs:string”/>
<prop oor:name="ImageSmallHCURL” oor:type="xs:string”/>
<prop oor:name="ImageBigHCURL” oor:type="xs:string”/>
</group>
<group oor:name="Images">
<prop oor:name="URL" oor:type="xs:string"/>
<node-ref oor:name="UserDefinedImages" oor:node-type="UserDefinedImages"/>
</group>
<set oor:name="ToolBarItems" oor:node-type="ToolBarItem"/>
</templates>
<component>
<group oor:name="AddonUI">
<set oor:name="AddonMenu" oor:node-type="Menultem"/>
<set oor:name="Images" oor:node-type="Images"/>
<set oor:name="OfficeMenuBar" oor:node-type="PopupMenu"/>
<set oor:name="OfficeToolBar" oor:node-type="ToolBarItems"/>
<set oor:name="OfficeHelp" oor:node-type="Menultem"/>
</group>
</component>
</oor:component-schema>

Menus

As explained in the previous section, OpenOffice.org supports two menu locations where an add-
on can be integrated: a top-level menu or the Tools - Add-Ons submenu. The configuration branch
org.openoffice.Office. Addons provides two different nodes for these locations:

Supported sets of org.openoffice.Office.Addons to define an Add-On menu

OfficeMenuBar A menu defined in this set will be a top-level menu in the OpenOffice.org
Menu Bar.
AddonMenu A menu defined in this set will be a pop-up menu which is part of the Add-

Ons menu item located on the bottom position of the Tools menu.

Submenu in Tools - Add-Ons

To integrate add-on menu items into the Tools Add-Ons menu, use the AddonMenu set. The
AddonMenu set consists of nodes of type MenuItem. The MenuItemnode-type is also used for the
submenus of a top-level add-on menu.

Properties of template Menultem

oor:name string. The name of the configuration node. The name must begin with an ASCII letter
character. It must be unique within the OfficeMenuBar set. Therefore, it is mandatory
to use a schema such as org.openoffice.<developer>.<product>.<addon
name> or com.<company>.<product>.<addon name> to avoid name conflicts.
Keep in mind that your configuration file will be merged into the OpenOffice.org
configuration branch. You do not know which add-ons, or how many add-ons, are
currently installed.
The node name of menu items of a submenu must be unique only within their
submenu. A configuration set cannot guarantee the order of its entries, so you should
use a schema such as string + number, for example m1l , as the name is used to sort the
entries.

300 OpenOffice.org 2.3 Developer's Guide « June 2007

Properties of template Menultem

URL

Title

Imageldentifier

string. Specifies the command URL that should be dispatched when the user activates
the menu entry. It will be ignored if the Menultem is the title of a a submenu.

To define a separator you can use the special command URL "private:separator”. A
separator ignores all other properties.

string. Contains the title of a top-level menu item. This property supports localization:
The default string, which is used when OpenOffice.org cannot find a string definition
for its current language, uses the value element without an attribute. You define a
string for a certain language with the xml:lang attribute. Assign the language/locale
to the attribute, for example <value xml:lang="en-US">string</value>.

string. Defines an optional image URL that could address an internal OpenOffice.org
image or an external user-defined image. The syntax of an internal image URL is:
private:image/<number> where number specifies the image.

External user-defined images are supported using the placeholder variable %origin%
representing the folder where the component will be installed by the pkgchk tool. The
pkgchk tool will exchanges %origin% by another placeholder, which is substituted
during runtime by OpenOffice.org to the real installation folder. Since OpenOffice.org
supports two different configuration folders (user and share) this mechanism is neces-
sary to determine the installation folder of a component.

For example the URL %origin%/image will be substituted to something like

vnd.sun.star.expand:3UNO_USER_PACKAGES_CACHE/uno_packages/component.zip.
1051610942/image .

The placeholder vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE will then be
substituted during runtime by the real path.

As the ImageIdentifier property can only hold one URL but OpenOffice.org
supports four different images (small/large image and both as high contrast), a naming
schema is used to address them. OpenOffice.org adds _16.bmp and _26.bmp to the
provided URL to address the small and large image. _16h.bmp and _26h.bmp is added to
address the high contrast images. If the high contrast images are omitted the normal
images are used instead.

OpenOiffice.org supports bitmaps with 1, 4, 8, 16, 24 bit color depth. Magenta (color
value red=0xffff, green=0x0000, blue=0xffff) is used as the transparent color, which
means that the background color of the display is used instead of the image pixel color
when the image is drawn.

For optimal results the size of small images should be 16x16 pixel and for big images
26x26 pixel. Other image sizes are scaled automatically by OpenOffice.org.

If no high contrast image is provided, OpenOffice.org uses the normal image for high
contrast environments. Images that are not valid will be ignored.

This property has a higher priority than the Images set when OpenOffice.org searches
for images.

301

Properties of template Menultem

Target string. Specifies the target frame for the command URL. Normally an add-on will use
one of the predefined target names:

_top
Returns the top frame of the called frame, which is the first frame where isTop ()
returns true when traversing up the hierarchy.

_parent
Returns the next frame above in the frame hierarchy.

_self
Returns the frame itself, same as an empty target frame name. This means you are
searching for a frame you already have, but it is legal to do so.

_blank
Creates a new top-level frame whose parent is the desktop frame.

Context string. A list of service names, separated by a comma, that specifies in which context the
add-on menu function should be visible. An empty Context means that the function
should visible in all contexts.

The OpenOffice.org application modules use the following services names:

Writer: com.sun.star.text. TextDocument

Spreadsheet: com.sun.star.sheet.SpreadsheetDocument
Presentation: com.sun.star.presentation.PresentationDocument
Draw: com.sun.star.drawing.DrawingDocument
Formula: com.sun.star.formula.FormulaProperties

Chart: com.sun.star.chart.ChartDocument

Bibliography: ~ com.sun.star.frame.Bibliography

The context service name for add-ons is determined by the service name of the model
that is bound to the frame, which is associated with UI element (toolbar, menu bar, ...).
Thus the service name of the Writer model is com. sun.star.text.TextDocument.
That means, the context name is bound to the model of an application module. If a
developer implements a new desktop component that has a model, it is possible to use
its service name as a context for add-on Ul items.

Submenu A set of Menultem entries. Optional to define a submenu for the menu entry.

The next examples shows a configuration file specifying a single menu item titled Add-On Func-
tion 1. The unique node name of the add-on is called org.openoffice.example.addon.example.functionl.

<?xml version='1.0' encoding='UTF-8'?2>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">
<node oor:name="AddonUI">
<node oor:name="AddonMenu">
<node oor:name="org.openoffice.0Office.addon.example.functionl" oor:op="replace">
<prop oor:name="URL" oor:type="xs:string">
<value>org.openoffice.Office.addon.example:Functionl</value>
</prop>
<prop oor:name="Imageldentifier" oor:type="xs:string"
<value/>
</prop>
<prop oor:name="Title" oor:type="xs:string">
<value/>
<value xml:lang="en-US">Add-On Function 1</value>
</prop>
<prop oor:name="Target" oor:type="xs:string">
<value> self</value>
</prop>
<prop oor:name="Context" oor:type="xs:string">
<value>com.sun.star.text.TextDocument</value>
</prop>
</node>
</node>
</node>

302 OpenOffice.org 2.3 Developer's Guide « June 2007

Top-level Menu

If you want to integrate an add-on into the OpenOffice.org Menu Bar, you have to use the office-
MenuBar set. An Of ficeMenuBar set consists of nodes of type PopupMenu .

Properties of template PopupMenu

oor:name string. The name of the configuration node. The name must begin with an ASCII letter
character. It must be unique within the OfficeMenuBar set. Therefore, it is mandatory
to use a schema such as org.openoffice.<developer>.<product>.<addon
name> or com.<company>.<product>.<addon name> to avoid name conflicts.
Please keep in mind that your configuration file will be merged into the OpenOffice.org
configuration branch. You do not know what add-ons, or how many add-ons, are
currently installed.

Title string. Contains the title of a top-level menu item. This property supports localization:
The default string, which is used when OpenOffice.org cannot find a string definition
for its current language, uses the value element without an attribute. You define a
string for a certain language with the xml:lang attribute. Assign the language/locale
to the attribute, for example <value xml:lang="en-US">string</value>.

Context string. A list of service names, separated by a comma, that specifies in which context the
add-on menu should be visible. An empty context means that the function should be
visible in all contexts.

The OpenOiffice.org application modules use the following services names:

Writer: com.sun.star.text.TextDocument

Spreadsheet: com.sun.star.sheet.SpreadsheetDocument
Presentation: com.sun.star.presentation.PresentationDocument
Draw: com.sun.star.drawing.DrawingDocument
Formula: com.sun.star.formula.FormulaProperties

Chart: com.sun.star.chart.ChartDocument

Bibliography: com.sun.star.frame.Bibliography

The context service name for add-ons is determined by the service name of the model
that is bound to the frame, which is associated with Ul element (toolbar, menu bar, ...).
Thus the service name of the Writer model is com.sun.star.text.TextDocument.
That means, the context name is bound to the model of an application module. If a
developer implements a new desktop component that has a model it is possible to use
its service name as a context for add-on Ul items.

Submenu A set of MenuItem entries. Defines the submenu of the top-level menu. It must be
defined on a top-level menu otherwise the whole menu will be ignored.
For more information how to define a submenu please refer to section 4.7.3 Writing
UNO Components - Integrating Components into OpenOffice.org - User Interface Add-Ons -
Guidelines where the MenuItem template is described.

The following example defines a top-level menu titled Add-On example with a single menu item
titted Add-On Function 1. The menu item has a self-defined image used for displaying it next to
the menu title.

In the example the nodes are called oor:name="org.openoffice.example.addon" and
oor:name="ml".

Do not forget to specify the cor:op="replace" attribute in your self-defined nodes. The replace
operation must be used to add a new node to a set or extensible node. Thus the real meaning of the
operation is "add or replace". Dynamic properties can only be added once and are then considered
mandatory, so during layer merging the replace operation always means "add" for them.

For more details about the configuration and their file formats please read 16 Configuration
Management.

<?xml version='1.0' encoding='UTF-8'?2>

<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">

303

<node oor:name="AddonUI">
<node oor:name="OfficeMenuBar">
<node oor:name="org.openoffice.example.addon" oor:op="replace">
<prop oor:name="Title" oor:type="xs:string">
<value/>
<value xml:lang="en-US">Add-On example</value>
<value xml:lang="de”>Add-On Beispiel</value>
</prop>
<prop oor:name="Context" oor:type="xs:string">
<value>com.sun.star.text.TextDocument</value>
</prop>
<node oor:name="Submenu">
<node oor:name="ml" oor:op="replace">
<prop oor:name="URL" ocor:type="xs:string">
<value>org.openoffice.Office.addon.example:Functionl</value>
</prop>
<prop oor:name="Title" oor:type="xs:string">
<value/>
<value xml:lang="en-US”>Add-On Function 1</value>
<value xml:lang="de">Add-On Funktion 1</value>
</prop>
<prop oor:name="Target" oor:type="xs:string">
<value> self</value>
</prop>
</node>
</node>
</node>
</node>
</node>
</oor:component-data>

Toolbars

An add-on can also be integrated into the Function Bar of OpenOffice.org. The

org.openoffice.Office. Addons configuration branch has a set called 0fficeToolBar where you can
add toolbar items for an add-on. The toolbar structure uses an embedded set called ToolbarItems
, which is used by OpenOffice.org to group toolbar items from different add-ons. OpenOffice.org
automatically inserts a separator between different add-ons toolbar items.

" The space of the Function Bar is limited, so only the most used /important functions should be added to the
Of ficeToolBar set. Otherwise OpenOffice.org will add scroll-up/down buttons at the end of the Function
Bar and the user has to scroll the toolbar to have access to all toolbar buttons.

‘ Properties of template ToolBarltems

oor:name string. The name of the configuration node. The name must begin with an ASCII letter
character. It must be unique within the Of ficeMenuBar set. Therefore it is mandatory
to use a schema such as org.openoffice.<developer>.<product>.<addon
name> or com.<company>.<product>.<addon name> to avoid name conflicts.
Please keep in mind that your configuration file will be merged into the OpenOffice.org
configuration branch. You do not know what add-ons, or how many add-ons, are
currently installed.

The ToolBarItems setis a container for the ToolBarItem nodes.

Properties of template ToolBarltem

oor:name string. The name of the configuration node. It must be unique inside your own Tool-
BarItems set. A configuration set cannot guarantee the order of its entries, therefore
use a schema such as string + number, for example "m1", as the name is used to sort
the entries. Please be aware that the name must begin with an ASCII letter character.

URL string. Specifies the command URL that should be dispatched when the user activates
the menu entry. To define a separator you can use the special command URL
"private:separator". A separator ignores all other properties.

304 OpenOffice.org 2.3 Developer's Guide « June 2007

Properties of template ToolBarltem

Title

Imageldentifier

string. Contains the title of a top-level menu item. This property supports localization:
The default string, which is used when OpenOffice.org cannot find a string definition
for its current language, uses the value element without an attribute. You define a
string for a certain language with the xml:lang attribute. Assign the language/locale
to the attribute, for example <value xml:lang="en-US">string</value>.

string. Defines an optional image URL that could address an internal OpenOffice.org
image or an external user-defined image. The syntax of an internal image URL is:
private:image/<number> where number specifies the image.

External user-defined images are supported using the placeholder variable %origin%,
representing the folder where the component will be installed by the pkgchk tool. The
pkgchk tool exchanges %origin% with another placeholder, which is substituted during
runtime by OpenOffice.org to the real installation folder. Since OpenOffice.org supports
two different configuration folders (user and share) this mechanism is necessary to
determine the installation folder of a component.

For example the URL %origin%/image will be substituted with something like

vnd.sun.star.expand:3UNO_USER_PACKAGES_CACHE/uno_packages/component.zip.
1051610942/image .

The placeholder vnd.sun.star.expand:$ UNO_USER_PACKAGES_CACHE is then substi-
tuted during runtime with the real path.

Since the ImageIdentifier property can only hold one URL but OpenOffice.org
supports four different images (small/large image, and both as high contrast), a
naming schema is used to address them. OpenOffice.org adds _16.bmp and _26.bmp to
the provided URL to address the small and large image. _16h.bmp and _26h.bmp is
added to address the high contrast images. If the high contrast images are omitted, the
normal images are used instead.

OpenOffice.org supports bitmaps with 1, 4, 8, 16, 24 bit color depth. Magenta (color
value red=0xffff, green=0x0000, blue=0xffff) is used as the transparent color, which
means that the background color of the display is used instead of the image pixel color
when the image is drawn.

For optimal results, the size of small images should be 16x16 pixel, and for big images
26x26 pixel. Other image sizes are scaled automatically by OpenOffice.org.

If no high contrast image is provided, OpenOffice.org uses the normal image for high
contrast environments. Images that are not valid are ignored.

This property has a higher priority than the Images set when OpenOffice.org searches
for images.

Target

string. Specifies the target frame for the command URL. Normally an add-on will use
one of the predefined target names:

_top
Returns the top frame of the called frame, which is the first frame where isTop ()
returns true when traversing up the hierarchy.

_parent
Returns the next frame above in the frame hierarchy.

_self
Returns the frame itself, same as an empty target frame name. This means you are
searching for a frame you already have, but it is legal to do so.

_blank
Creates a new top-level frame whose parent is the desktop frame.

305

306

Properties of template ToolBarltem

Context string. A list of service names, separated by a comma, that specifies in which context the
add-on menu should be visible. An empty context means that the function should be
visible in all contexts.

The OpenOffice.org application modules use the following services names:

Writer: com.sun.star.text. TextDocument

Spreadsheet: com.sun.star.sheet.SpreadsheetDocument
Presentation: com.sun.star.presentation.PresentationDocument
Draw: com.sun.star.drawing.DrawingDocument
Formula: com.sun.star.formula.FormulaProperties

Chart: com.sun.star.chart.ChartDocument

Bibliography: ~ com.sun.star.frame.Bibliography

The context service name for add-ons is determined by the service name of the model
that is bound to the frame, which is associated with an Ul element (toolbar, menu

bar, ...). Thus the service name of the Writer model is com. sun.star.text.Text-
Document. That means, the context name is bound to the model of an application
module. If you implement a new desktop component that has a model, it is possible to
use its service name as a context for add-on Ul items.

The following example defines one toolbar button for the function called
org.openoffice.Office.addon.example:Functionl . The toolbar button is only visible when
using the OpenOffice.org Writer module.

<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">
<node oor:name="AddonUI">
<node oor:name="OfficeToolBar">
<node oor:name="org.openoffice.Office.addon.example" oor:op="replace">
<node oor:name="ml”>
<prop oor:name="URL" oor:type="xs:string">
<value>org.openoffice.Office.addon.example:Functionl</value>
</prop>
<prop oor:name="Title" oor:type="xs:string">
<value/>
<value xml:lang="en-US”>Function 1</value>
<value xml:lang="de">Funktion 1</value>
</prop>
<prop oor:name="Target" oor:type="xs:string">
<value> self</value>
</prop>
<prop oor:name="Context" oor:type="xs:string">
<value>com.sun.star.text.TextDocument</value>
</prop>
</node>
</node>
</node>
</node>
</oor:component-data>

Images for Toolbars and Menus

OpenOffice.org supports images in menus and toolboxes. In addition to the property Imageldenti-
fier, the add-ons configuration branch has a fourth set called Images that let developers define and
use their own images. The image data can be integrated into the configuration either as hex
encoded binary data or as references to external bitmap files. The Images set binds a command
URL to user defined images.

OpenOffice.org 2.3 Developer's Guide « June 2007

Properties of template Images

Ooor:name

URL

string. The name of the configuration node. It must be unique inside the configura-
tion branch. Therefore it is mandatory to use a schema such as
org.openoffice.<developer>.<add-on name> or
com.<company>.<product>.<add-on name> to avoid name conflicts. Please
keep in mind that your configuration file will be merged into the OpenOffice.org
configuration branch. You do not know how many or which add-ons were installed
before by the user.

Please be aware that the name must begin with an ASCII letter character.

string. Specifies the command URL that should be bound to the defined images.
OpenOffice.org searches for images with the command URL that a menu
item/toolbox item contains.

UserDefinedImages Group of properties. This optional group provides self-defined images data to

OpenOffice.org. There are two different groups of properties to define the image
data. One property group provides the image data as ongoing hex values specifying
an uncompressed bitmap format stream. The other property group uses URLs to
external bitmap files. The names of these properties end with "'URL". OpenOffice.org
supports bitmap streams with 1, 4, 8, 16, 24 bit color depth. Magenta (color value
red=0xffff, green=0x0000, blue=0xffff) is used as the transparent color, meaning that
the background color of the display will be used instead of the image pixel color
when the image is drawn.

For best quality, the size of small images should be 16x16 pixel, and for big images
26x26 pixel. Other image sizes will be scaled automatically by OpenOffice.org.

If no high contrast image data is provided, OpenOffice.org uses the normal image for
high contrast environments. Image data that is not valid will be ignored.

An Images node uses a second node called UserDefinedImages where the user defined images

data are stored.

Properties of template UserDefinedImages

ImageSmall

ImageBig

ImageSmallHC

ImageBigHC

HexBinary. Used for normal menu/toolbar items, standard size is 16x16 pixel.

HexBinary. Only toolbars can use big images. Standard size is 26x26 pixel. The user can
activate large buttons with the Tools Options View Large Buttons check box.

HexBinary. Used for high contrast environments, which means that the background
color of a menu or toolbar is below a certain threshold value for the brightness.

HexBinary. Only toolbars can use big images. Used for high contrast environments,
which means that the background color of a toolbar is below a certain threshold value
for the brightness.

ImageSmallURL

ImageBigURL

string. An URL to an external image which is used for menu items and normal toolbar
buttons. External user-defined images are supported using the placeholder variable
%origin%, representing the folder where the component will be installed by the pkgchk
tool. The pkgchk tool exchanges %origin% with another placeholder, which is substi-
tuted during runtime by OpenOffice.org to the real installation folder. Since
OpenOiffice.org supports two different configuration folders (user and share) this mech-
anism is necessary to determine the installation folder of a component.

For example the URL %origin%/image will be substituted with something like

vnd.sun.star.expand:3UNO_USER_PACKAGES_CACHE/uno_packages/component.zip.
1051610942/image .

The placeholder vnd.sun.star.expand:$ UNO_USER_PACKAGES_CACHE is then substi-
tuted during runtime with the real path.

string. An URL to an external image which is used for big toolbar buttons.

307

308

Properties of template UserDefinedImages

ImageSmallHCURL string. An URL to an external image which is used for menu items and normal toolbar
button in a high contrast environment.

ImageBigHCURL string. An URL to an external image which is used for big toolbar buttons in a high
contrast environment.

The embedded image data have a higher priority when used in conjunction with the URL proper-
ties. The embedded and URL properties can be mixed without a problem.

The next example creates two user-defined images for the function
org.openoffice.Office.addon.example:Functionl . The normal image is defined using the
embedded image data property ImageSmall and has a size of 16x16 pixel and a 4-bit color depth.
The other one uses the URL property ImageSmallHCURL to reference an external bitmap file for the
high contrast image.

<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">
<node oor:name="AddonUI">
<node oor:name="Images">
<node oor:name="com.sun.star.comp.framework.addon.imagel”" oor:op="replace">
<prop oor:name="URL" oor:type="xs:string">
<value>org.openoffice.Office.addon.example:Functionl</value>
</prop>
<node oor:name="UserDefinedImages”>
<prop oor:name="ImageSmall”>
<value>424d£f80000000000000076000000280000001000000010000000010004000000000000000
000120b0000120b000000000000000000000000££0000££££0000££0000££££0000££000000££00££00££££££00c0c0c00080808
00000000000000080000080800000800000808000008000000080008000ccccccccccceccccc2c266b181b666c2c5cc66b818b666
5c555566b181b666555555660818b66655555566b181b6665555a8666bbb6668a55a0a866666668a0a5000a8666668a000a6000a
86668a000a556000a868a000a55556000a8a000a5555556000a000a55555555600000a55555555556000a55555555555560a5555
5550000</value>
</prop>
<prop oor:name="ImageSmallHCURL"”>
<value>%origin%/functionl.bmp</value>
</prop>
</node>
</node>
</node>
</node>
</oor:component-data>

Help Integration

OpenOffice.org supports the integration of add-ons into its Help menu. The add-on help menu
items are inserted below the Registration menu item, guarded by separators. This guarantees that
users have quick access to the add-on help.

The OfficeHelp set uses the same Menultem node-type as the AddonMenu set, but there are some
special treatments of the properties.

‘ Properties of template Menultem

oor:name string. The name of the configuration node. It must be unique inside the configuration
branch. Therefore it is mandatory to use a schema such as org.openoffice.<devel-
oper>.<add-on name> or com.<company>.<product>.<add-on name> to avoid
name conflicts. Please keep in mind that your configuration file will be merged into the
OpenOffice.org configuration branch. You do not know how many or which add-ons
were installed before by the user.
Please be aware that the name must begin with an ASCII letter character.

URL string. Specifies the help command URL that should be dispatched when the user acti-
vates the menu entry.
Separators defined by the special command URL "private:separator" are
supported, but should not be used in the help menu, because every add-on should only
use one menu item.

OpenOffice.org 2.3 Developer's Guide « June 2007

Properties of template Menultem

Title

Imageldentifier

string. Contains the title of a top-level menu item. This property supports localization:
The default string, which is used when OpenOffice.org cannot find a string definition
for its current language, uses the value element without an attribute. You define a
string for a certain language with the xml:lang attribute. Assign the language/locale
to the attribute, for example <value xml:lang="en-US">string</value>.

string. Defines an optional image URL that could address an internal OpenOffice.org
image or an external user-defined image. The syntax of an internal image URL is:
private:image/<number> where number specifies the image.

External user-defined images are supported using the placeholder variable %origin%,
representing the folder where the component will be installed by the pkgchk tool. The
pkgchk tool exchanges %origin% with another placeholder, which is substituted during
runtime by OpenOffice.org to the real installation folder. Since OpenOffice.org supports
two different configuration folders (user and share), this mechanism is necessary to
determine the installation folder of a component.

For example the URL %origin%/image is substituted with something like

vnd.sun.star.expand:3UNO_USER_PACKAGES_CACHE/uno_packages/component.zip.
1051610942/image .

The placeholder vnd.sun.star.expand:$ UNO_USER_PACKAGES_CACHE is then substi-
tuted during runtime by the real path.

Since the ImageIdentifier property can only hold one URL but OpenOffice.org
supports four different images (small/large image and both as high contrast), a naming
schema is used to address them. OpenOffice.org adds _16.bmp and _26.bmp to the
provided URL to address the small and large image. _16h.bmp and _26h.bmp is added to
address the high contrast images. If the high contrast images are omitted, the normal
images are used instead.

OpenOffice.org supports bitmaps with 1, 4, 8, 16, 24 bit color depth. Magenta (color
value red=0xffff, green=0x0000, blue=0xffff) is used as the transparent color, which
means that the background color of the display is used instead of the image pixel color
when the image is drawn.

For optimal results the size of small images should be 16x16 pixel and for big images
26x26 pixel. Other image sizes will be scaled automatically by OpenOffice.org.

If no high contrast image is provided, OpenOffice.org uses the normal image for high
contrast environments. Images that are not valid are ignored.

This property has a higher priority than the Images set when OpenOffice.org searches
for images.

Target

string. Specifies the target frame for the command URL. Normally an add-on will use
one of the predefined target names:

_top
Returns the top frame of the called frame, which is the first frame where isTop ()
returns true when traversing up the hierarchy.

_parent
Returns the next frame above in the frame hierarchy.

_self
Returns the frame itself, same as an empty target frame name. This means you are
searching for a frame you already have, but it is legal to do so.

_blank
Creates a new top-level frame whose parent is the desktop frame.

309

Properties of template Menultem

Context string. A list of service names, separated by a comma, that specifies in which context the
add-on menu should be visible. An empty context means that the function is visible in
all contexts.

The OpenOffice.org application modules use the following services names:

Writer: com.sun.star.text. TextDocument

Spreadsheet: com.sun.star.sheet.SpreadsheetDocument
Presentation: com.sun.star.presentation.PresentationDocument
Draw: com.sun.star.drawing.DrawingDocument
Formula: com.sun.star.formula.FormulaProperties

Chart: com.sun.star.chart.ChartDocument

Bibliography: ~ com.sun.star.frame.Bibliography

The context service name for add-ons is determined by the service name of the model
that is bound to the frame, which is associated with an Ul element (toolbar, menu
bar, ...). Thus the service name of the Writer model is com. sun.star.text.Text-
Document. That means, the context name is bound to the model of an application
module. If a developer implements a new desktop component that has a model, it is
possible to use its service name as a context for add-on Ul items.

Submenu A set of MenuItem entries. Not used for OfficeHelp Menultems , any definition
inside will be ignored.

The following example shows the single help menu item for the add-on example.

<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">
<node oor:name="AddonUI">
<node oor:name="OfficeHelp">
<node oor:name="com.sun.star.comp.framework.addon" oor:op="replace">
<prop oor:name="URL" oor:type="xs:string"
<value>org.openoffice.Office.addon.example:Help</value>
</prop>
<prop oor:name="ImageIdentifier" oor:type="xs:string">
<value/>
</prop>
<prop oor:name="Title" oor:type="xs:string">
<value xml:lang="de">Uber Add-On Beispiel</value>
<value xml:lang="en-US">About Add-On Example</value>
</prop>
<prop oor:name="Target" oor:type="xs:string">
<value> self</value>
</prop>
</node>
</node>
</node>
</oor:component-data>

Installation

After finishing the implementation of the UNO component and the definition of the user interface
part you can create an extension. An extension can be used by an end-user to install the add-on
into OpenOffice.org.

The configuration files that were created for the add-on, such as protocol handler, jobs, and user
interface definition must be added to the root of the zip file. The structure of a zip file supporting
Windows should resemble the following code:

example_ addon.oxt:
META INF/
manifest.xml
Addons.xcu
ProtocolHandler.xcu
windows.plt/
example_ addon.dll

310 OpenOffice.org 2.3 Developer's Guide « June 2007

Before you install the extension, make absolutely sure there are no running instances of OpenOffice.org.
The unopkg tool recognizes a running OpenOffice.org in a local installation, but not in a networked
installation. Installing into a running office installation might cause inconsistencies and destroy
your installation!

The extension installation for the example add-on is as simple as changing to the
<OfficePath>/program directory with a command-line shell and running

[<OfficePath>/program] $ unopkg add /foo/bar/example addon.zip

For an explanation of other deployment options, please refer to 4.9 Writing UNO Components - Deploy-
ment Options for Components and for an explanation about extensions refer to 5 Extensions.

4.7.4 Disable Commands

In OpenOffice.org, there may be situations where functions should be disabled to prevent users
from changing or destroying documents inadvertently. OpenOffice.org maintains a list of disabled
commands that can be maintained by users and developers through the configuration APL

A command request can be created by any object, but in most cases, user interface objects create
these requests. Consider, for instance, a toolbox where different functions acting on the office
component are presented as buttons. Once a button is clicked, the desired functionality should be
executed. If the code assigned to the button is provided with a suitable command URL, the
dispatch framework can handle the user action by creating the request and finding a component
that can handle it.

The dispatch framework works with the design pattern chain of responsibility: everything a compo-
nent needs to know if it wants to execute a request is the last link in a chain of objects capable of
executing requests. If this object gets the request, it checks whether it can handle it or otherwise
passes it to the next chain member until the request is executed or the end of the chain is reached.
The disable commands implementation is the first chain member and can therefore work as a wall
for all disabled commands. They are not be sent to the next chain member, and disappear.

shows how the disable commands feature affects the normal command application flow.

311

Configuration User Interface

List of queryDispatch/
disabled dispatch
commands (URL)

Frame

Disabling
’ Commands ‘

Command disabled

>

<

Interception

-«

Document
Controller

-«

Protocol
Handler

<

Content
Handler

v

Loader

Hllustration 4.10: How the disable commands feature works

! Since the disable commands implementation is the first part in the dispatch chain, there is no way to circum-
? vent it. The disabled command must be removed from the list, otherwise it remains disabled.

312 OpenOffice.org 2.3 Developer's Guide « June 2007

Configuration

The disable commands feature uses the configuration branch org.openoffice.Office. Commands to read
which commands should be disabled. The following schema applies:

<?xml version='1l.0' encoding='UTF-8'?2>
<oor:component-schema oor:name="Commands" oor:package="org.openoffice.Office" xml:lang="en-US"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<templates>
<group oor:name="CommandType">
<prop oor:name="Command" oor:type="xs:string"/>
</group>
</templates>
<component>
<group oor:name="Execute">
<set oor:name="Disabled" oor:node-type="CommandType" />
</group>
</component>
</oor:component-schema>

The configuration schema for disabled commands is very simple. The

org.openoffice.Office. Commands branch has a group called Execute. This group has only one set
called Disabled. The Disabled set supports nodes of the type CommandType. The following table
describes the supported properties of CommandType.

Properties of the CommandType group

oor:component string. It must be unique inside the Disabled set, but has no additional meaning for the
-data implementation of the disable commands feature. Use a consecutive numbering scheme;
even numbers are allowed.

Command string. This is the command name with the preceding protocol. That means the command
URL .uno:Open (which shows the File Open dialog) must be written as Open.
The valid commands can be found in the document Index of Command Names in the Docu-

mentation section of the framework project on the OpenOffice.org web page. The
OpenOffice.org SDK also includes the latest list of command names.

The example below shows a configuration file that disables the commands for File Open, Edit
Select All, Help About OpenOffice.org and File Exit.

<?xml version="1.0" encoding="UTF-8" 2>
<oor:component-data oor:name="Commands" oor:package="org.openoffice.Office"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<node oor:name="Execute">
<node oor:name="Disabled">
<node oor:name="ml" oor:op="replace">
<prop oor:name="Command">
<value>Open</value>
</prop>
</node>
<node oor:name="m2" oor:op="replace">
<prop oor:name="Command">
<value>SelectAll</value>
</prop>
</node>
<node oor:name="m3" oor:op="replace">
<prop oor:name="Command">
<value>About</value>
</prop>
</node>
<node oor:name="m4" oor:op="replace">
<prop oor:name="Command">
<value>Quit</value>
</prop>
</node>
</node>
</node>
</oor:component-data>

313

http://www.openoffice.org/files/documents/25/60/commands_11beta.html
http://www.openoffice.org/files/documents/25/60/commands_11beta.html
http://www.openoffice.org/files/documents/25/60/commands_11beta.html
http://framework.openoffice.org/servlets/ProjectDocumentList
http://framework.openoffice.org/servlets/ProjectDocumentList
http://framework.openoffice.org/servlets/ProjectDocumentList
http://framework.openoffice.org/servlets/ProjectDocumentList
http://framework.openoffice.org/servlets/ProjectDocumentList
http://framework.openoffice.org/servlets/ProjectDocumentList

Disabling Commands at Runtime

The following code example first removes all commands that were defined in the user layer of the
configuration branch org.openoffice.0Office.Commands as having a defined starting point. Then
it checks if it can get dispatch objects for some pre-defined commands.

Then the example disables these commands and tries to get dispatch objects for them again. At the
end, the code removes the disabled commands again, otherwise OpenOffice.org would not be fully
useable any longer.

import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.uno.UnoRuntime;

import com.sun.star.uno.XComponentContext;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.beans.XPropertySet;

import com.sun.star.beans.PropertyValue;

import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.lang.XSingleServiceFactory;
import com.sun.star.util.XURLTransformer;

import com.sun.star.frame.XDesktop;

import com.sun.star.beans.UnknownPropertyException;

/*

* Provides example code how to enable/disable
* commands.

*/

public class DisableCommandsTest extends java.lang.Object {

/*
* A list of command names
w2y
final static private String[] aCommandURLTestSet =
{
new String("Open"),
new String("About"),
new String("SelectAll"),
new String("Quit"),
}i

private static XComponentContext xRemoteContext = null;

private static XMultiComponentFactory xRemoteServiceManager = null;
private static XURLTransformer xTransformer = null;

private static XMultiServiceFactory xConfigProvider = null;

/*
* @param args the command line arguments
*/

public static void main(String[] args) {

try {

// connect

XComponentContext xLocalContext =
com.sun.star.comp.helper.Bootstrap.createInitialComponentContext (null) ;

XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager () ;

Object urlResolver = xLocalServiceManager.createInstanceWithContext (
"com.sun.star.bridge.UnoUrlResolver", xLocalContext) ;

XUnoUrlResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface (
XUnoUrlResolver.class, urlResolver);

Object initialObject = xUnoUrlResolver.resolve (
"uno:socket, host=localhost,port=2083;urp; StarOffice.ServiceManager") ;

XPropertySet xPropertySet = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, initialObject);

Object context = xPropertySet.getPropertyValue ("DefaultContext");

xRemoteContext = (XComponentContext)UnoRuntime.queryInterface (
XComponentContext.class, context);

xRemoteServiceManager = xRemoteContext.getServiceManager();

Object transformer = xRemoteServiceManager.createInstanceWithContext (
"com.sun.star.util.URLTransformer", xRemoteContext);

xTransformer = (com.sun.star.util.XURLTransformer)UnoRuntime.queryInterface (
com.sun.star.util.XURLTransformer.class, transformer);

Object configProvider = xRemoteServiceManager.createInstanceWithContext (
"com.sun.star.configuration.ConfigurationProvider", xRemoteContext) ;

xConfigProvider = (com.sun.star.lang.XMultiServiceFactory)UnoRuntime.queryInterface (
com.sun.star.lang.XMultiServiceFactory.class, configProvider);

// First we need a defined starting point. So we have to remove
// all commands from the disabled set!
enableCommands () ;

// Check if the commands are usable
testCommands (false) ;

314 OpenOffice.org 2.3 Developer's Guide June 2007

// Disable the commands
disableCommands () ;

// Now the commands should not be usable anymore
testCommands (true) ;

// Remove disable commands to make Office usable again
enableCommands () ;

}

catch (java.lang.Exception e) {
e.printStackTrace() ;

}

finally {
System.exit (0) ;

}

}

/**
* Test the commands that we enabled/disabled
*/
private static void testCommands (boolean bDisabledCmds) throws com.sun.star.uno.Exception {
// We need the desktop to get access to the current frame
Object desktop = xRemoteServiceManager.createInstanceWithContext (
"com.sun.star.frame.Desktop", xRemoteContext);
com.sun.star.frame.XDesktop xDesktop = (com.sun.star.frame.XDesktop)UnoRuntime.queryInterface (
com.sun.star.frame.XDesktop.class, desktop);
com.sun.star.frame.XFrame xFrame = xDesktop.getCurrentFrame () ;
com.sun.star.frame.XDispatchProvider xDispatchProvider = null;
if (xFrame != null) {
// We have a frame. Now we need access to the dispatch provider.
xDispatchProvider = (com.sun.star.frame.XDispatchProvider)UnoRuntime.queryInterface (
com.sun.star.frame.XDispatchProvider.class, xFrame);
if (xDispatchProvider != null) {
// As we have the dispatch provider we can now check if we get a dispatch
// object or not.
for (int n = 0; n < aCommandURLTestSet.length; n++) {
// Prepare the URL
com.sun.star.util.URL[] aURL = new com.sun.star.util.URL[1];
aURL[0] = new com.sun.star.util.URL() ;
com.sun.star.frame.XDispatch xDispatch = null;

aURL[0] .Complete = ".uno:" + aCommandURLTestSet([n];
xTransformer.parseSmart (aURL, ".uno:");

// Try to get a dispatch object for our URL
xDispatch = xDispatchProvider.queryDispatch (aURL[0], "", 0);

if (xDispatch != null) {
if (bDisabledCmds)
System.out.println ("Something is wrong, I got dispatch object for "
+ aURL[0] .Complete) ;
else
System.out.println("Ok, dispatch object for " + aURL[O0].Complete);
}
else {
if (!bDisabledCmds)
System.out.println("Something is wrong, I cannot get dispatch object for "
+ aURL[0] .Complete) ;
else
System.out.println("Ok, no dispatch object for " + aURL[O].Complete) ;
}
resetURL (aURL[0]) ;

}
else
System.out.println("Couldn't get XDispatchProvider from Frame!");
}
else
System.out.println("Couldn't get current Frame from Desktop!");

}
/**

* Ensure that there are no disabled commands in the user layer. The
* implementation removes all commands from the disabled set!

Y
private static void enableCommands () {

// Set the root path for our configuration access
com.sun.star.beans.PropertyValue[] lParams = new com.sun.star.beans.PropertyValue[l];
lParams[0] = new com.sun.star.beans.PropertyValue () ;
lParams[0] .Name = new String("nodepath");
lParams[0] .Value = "/org.openoffice.Office.Commands/Execute/Disabled";
try {

// Create configuration update access to have write access to the configuration
Object xAccess = xConfigProvider.createInstanceWithArguments (
"com.sun.star.configuration.ConfigurationUpdateAccess", lParams) ;

315

com.sun.star.container.XNameAccess xNameAccess = (com.sun.star.container.XNameAccess)
UnoRuntime.queryInterface (com.sun.star.container.XNameAccess.class, xAccess);

if (xNameAccess != null) {
// We need the XNameContainer interface to remove the nodes by name
com.sun.star.container.XNameContainer xNameContainer =
(com.sun.star.container.XNameContainer)

UnoRuntime.queryInterface (com.sun.star.container.XNameContainer.class, xAccess);

// Retrieves the names of all Disabled nodes
String[] aCommandsSeq = xNameAccess.getElementNames () ;
for (int n = 0; n < aCommandsSeq.length; n++) {
try {
// remove the node
xNameContainer.removeByName (aCommandsSeq([n]) ;
}
catch (com.sun.star.lang.WrappedTargetException e) {
}

catch (com.sun.star.container.NoSuchElementException e) {

}
}

// Commit our changes
com.sun.star.util.XChangesBatch xFlush =
(com.sun.star.util.XChangesBatch)UnoRuntime.queryInterface (
com.sun.star.util.XChangesBatch.class, xAccess);
xFlush.commitChanges () ;
}
catch (com.sun.star.uno.Exception e) {
System.out.println ("Exception detected!");
System.out.println (e);

}

Jx*
* Disable all commands defined in the aCommandURLTestSet array
*/
private static void disableCommands () {
// Set the root path for our configuration access
com.sun.star.beans.PropertyValue[] lParams = new com.sun.star.beans.PropertyValue([l];
lParams[0] = new com.sun.star.beans.PropertyValue () ;
lParams[0] .Name = new String("nodepath");
lParams[0] .Value = "/org.openoffice.Office.Commands/Execute/Disabled";
try {

// Create configuration update access to have write access to the configuration
Object xAccess = xConfigProvider.createInstanceWithArguments (
"com.sun.star.configuration.ConfigurationUpdateAccess", lParams) ;

com.sun.star.lang.XSingleServiceFactory xSetElementFactory =
(com.sun.star.lang.XSingleServiceFactory)UnoRuntime.queryInterface (
com.sun.star.lang.XSingleServiceFactory.class, xAccess);

com.sun.star.container.XNameContainer xNameContainer =
(com.sun.star.container.XNameContainer)UnoRuntime.queryInterface (
com.sun.star.container.XNameContainer.class, xAccess);

if (xSetElementFactory != null && xNameContainer != null) {
Object[] aArgs = new Object[0];

for (int i = 0; 1 < aCommandURLTestSet.length; i++) {
// Create the nodes with the XSingleServiceFactory of the configuration
Object xNewElement = xSetElementFactory.createInstanceWithArguments (aArgs);
if (xNewElement != null) {
// We have a new node. To set the properties of the node we need
// the XPropertySet interface.
com.sun.star.beans.XPropertySet xPropertySet =
(com.sun.star.beans.XPropertySet)UnoRuntime.queryInterface (
com.sun.star.beans.XPropertySet.class,
xNewElement);

if (xPropertySet != null) {
// Create a unique node name.
String aCmdNodeName = new String ("Command-") ;
aCmdNodeName += 1i;

// Insert the node into the Disabled set

xPropertySet.setPropertyValue ("Command", aCommandURLTestSet[i]);
xNameContainer.insertByName (aCmdNodeName, xNewElement) ;

}
// Commit our changes

com.sun.star.util.XChangesBatch xFlush = (com.sun.star.util.XChangesBatch)
UnoRuntime.queryInterface (com.sun.star.util.XChangesBatch.class, xAccess);

316 OpenOffice.org 2.3 Developer's Guide June 2007

xFlush.commitChanges () ;
}
}
catch (com.sun.star.uno.Exception e) {
System.out.println ("Exception detected!");
System.out.println(e) ;

}

/**
* reset URL so it can be reused
*
* @param aURL
g the URL that should be reseted
=/
private static void resetURL (com.sun.star.util.URL aURL) {
aURL.Protocol "
aURL.User
aURL.Password
aURL. Server
aURL.Port
aURL.Path
aURL.Name
aURL.Arguments
aURL.Mark
aURL.Main
aURL.Complete

ww .
i

no .
;

LIRS
i

0;
wir .
;
wi .
;
Wi,
;
wi
;
Wi,
;
;

4.7.5 Intercepting Context Menus

A context menu is displayed when an object is right clicked. Typically, a context menu has context
dependent functions to manipulate the selected object, such as cut, copy and paste. Developers can
intercept context menus before they are displayed to cancel the execution of a context menu, add,
delete, or modify the menu by replacing context menu entries or complete sub menus. It is possible
to provide new customized context menus.

Context menu interception is implemented by the observer pattern. This pattern defines a one-to-
many dependency between objects, so that when an object changes state, all its dependents are
notified. The implementation supports more than one interceptor.

The root access point for intercepting context menus is a com.sun.star. frame.Controller object.
The controller implements the interface com.sun.star.ui.XContextMenulInterception to
support context menu interception.

Register and Remove an Interceptor

The com.sun.star.ui.XContextMenulInterception interface enables the developer to register
and remove the interceptor code. When an interceptor is registered, it is notified whenever a
context menu is about to be executed. Registering an interceptor adds it to the front of the inter-
ceptor chain, so that it is called first. The order of removals is arbitrary. It is not necessary to
remove the interceptor that registered last.

Writing an Interceptor

Notification

A context menu interceptor implements the com. sun.star.ui.XContextMenulnterceptorinter-
face. This interface has one function that is called by the responsible controller whenever a context
menu is about to be executed.

ContextMenulnterceptorAction notifyContextMenuExecute ([in] ContextMenuExecuteEvent aEvent)

317

http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterception.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Controller.html

318

The com.sun.star.ui.ContextMenuExecuteEvent is a struct that holds all the important infor-
mation for an interceptor.

Members of com. sun.star.ui.ContextMenuExecuteEvent

ExecutePosition com.sun.star.awt.Point. Contains the position the context menu will be
executed.
SourceWindow com.sun.star.awt.XWindow. Contains the window where the context

menu has been requested.

ActionTriggerCon- com.sun.star.container.XIndexContainer. The structure of the inter-
Lainer cepted context menu. The member implements the
com.sun.star.ui.ActionTriggerContainer service.

Selection com.sun.star.view.XSelectionSupplier. Provides the current selec-
tion inside the source window.

Querying a Menu Structure

The ActionTriggerContainer member is an indexed container of context menu entries, where
each menu entry is a property set. It implements the com.sun.star.ui.ActionTriggerContainer

service. The interface com. sun.star.container.XIndexContainer directly accesses the inter-
cepted context menu structure through methods to access, insert, remove and replace menu
entries.

All elements in an ActionTriggerContainer member support the com.sun.star.beans.xXProp-
ertySet interface to get and set property values. There are two different types of menu entries
with different sets of properties:

Type of Menu Entry | Service Name

Menu entry "com.sun.star.ui.ActionTrigger"

Separator "com.sun.star.ui.ActionTriggerSeparator"

It is essential to determine the type of each menu entry be querying it for the interface
com.sun.star.lang.XServiceInfo and Calling

boolean supportsService ([in] string ServiceName)

The following example shows a small helper class to determine the correct menu entry type.
(OfficeDev/MenuElement.java)

// A helper class to determine the menu element type
public class MenuElement

{
static public boolean IsMenuEntry(com.sun.star.beans.XPropertySet xMenuElement) {
com.sun.star.lang.XServiceInfo xServiceInfo =
(com.sun.star.lang.XServiceInfo)UnoRuntime.queryInterface (
com.sun.star.lang.XServiceInfo.class, xMenuElement);

return xServicelInfo.supportsService("com.sun.star.ui.ActionTrigger");

}
static public boolean IsMenuSeparator(com.sun.star.beans.XPropertySet xMenuElement) {
com.sun.star.lang.XServiceInfo xServiceInfo =
(com.sun.star.lang.XServiceInfo)UnoRuntime.queryInterface (
com.sun.star.lang.XServiceInfo.class, xMenuElement);
return xServicelInfo.supportsService("com.sun.star.ui.ActionTriggerSeparator");

}

Figure 4.1: Determine the menu element type

The com.sun.star.ui.ActionTrigger service supported by selectable menu entries has the
following properties:

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/XPropertySet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XSelectionSupplier.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#Selection
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#Selection
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#Selection
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ActionTriggerContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ActionTriggerContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ActionTriggerContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ActionTriggerContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ActionTriggerContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ActionTriggerContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XWindow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#SourceWindow
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#SourceWindow
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#SourceWindow
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ExecutePosition
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ExecutePosition
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html#ExecutePosition
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html

Properties of com.sun.star.ui.ActionTrigger

Text string. Contains the text of the label of the menu entry.

CommandURL string. Contains the command URL that defines which function will be executed if the
menu entry is selected by the user.

HelpURL string. This optional property contains a help URL that points to the help text.

Image com.sun.star.awt.XBitmap. This property contains an image that is shown left of the

menu label. The use is optional so that no image is used if this member is not initialized.

SubContainer com.sun.star.container.XIndexContainer. This property contains an optional
sub menu.

The com.sun.star.ui.ActionTriggerSeparator service defines only one optional property:

Property of com.sun.star.ui.ActionTriggerSeparator

Separator= com.sun.star.ui.ActionTriggerSeparatorType. Specifies a certain type of a
Lype separator. Currently the following types are possible:

const int LINE =0
const int SPACE =1
const int LINEBREAK =2

Changing a Menu

It is possible to accomplish certain tasks without implementing code in a context menu interceptor,
such as preventing a context menu from being activated. Normally, a context menu is changed to
provide additional functions to the user.

As previously discussed, the context menu structure is queried through the ActionTriggerCon-
tainer member that is part of the com.sun.star.ui.ContextMenuExecuteEvent structure. The

com.sun.star.ui.ActionTriggerContainer service has an additional interface
com.sun.star.lang.XMultiServiceFactory that creates com.sun.star.ui.ActionTrigger—
Container, com.sun.star.ui.ActionTrigger and com.sun.star.ui.ActionTriggerSeparator
objects. These objects are used to extend a context menu.

The com.sun.star.lang.XMultiServiceFactory implementation of the ActionTriggerContainer
implementation supports the following strings:

String Object
"com.sun.star.ui.ActionTrigger" Creates a normal menu entry.
"com.sun.star.ui.ActionTriggerContainer" Creates an empty sub menu' .
"com.sun.star.ui.ActionTriggerSeparator” Creates an unspecified separator?.

! A sub menu cannot exist by itself. It has to be inserted into a com.sun.star.ui.ActionTrigger!
? The separator has no special type. It is the responsibility of the concrete implementation to render an unspecified sepa-
rator.

Finishing Interception

Every interceptor that is called directs the controller how it continues after the call returns. The

enumeration com.sun.star.ui.ContextMenulnterceptorAction defines the possible return
values.

319

http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuInterceptorAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuInterceptorAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuInterceptorAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMultiServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuExecuteEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparatorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparatorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparatorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html#SeparatorType
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html#SeparatorType
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html#SeparatorType
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html#SeparatorType
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html#SeparatorType
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html#SeparatorType
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTriggerSeparator.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XIndexContainer.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#SubContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#SubContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#SubContainer
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XBitmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XBitmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XBitmap.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#Image
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#Image
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#Image
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#HelpURL
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#HelpURL
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#HelpURL
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#CommandURL
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#CommandURL
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#CommandURL
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#Text
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#Text
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html#Text
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ActionTrigger.html

Values of com.sun.star.ui.ContextMenuInterceptorAction

IGNORED Called object has ignored the call. The next registered
com.sun.star.ui.XContextMenuInterceptor should be notified.

CANCELLED The context menu must not be executed. No remaining interceptor will be
called.

EXECUTE_MODIFIED The context menu has been modified and should be executed without noti-
fying the next registered com.sun.star.ui.XContextMenulInter-

ceptor.

CONTINUE_MODIFIED The context menu was modified by the called object. The next registered
com.sun.star.ui.XContextMenulInterceptor should be notified.

The following example shows a context menu interceptor that adds a a sub menu to a menu that
has been intercepted at a controller, where this com.sun.star.ui.XContextMenulInterceptor has
been registered. This sub menu is inserted ino the context menu at the topmost position. It
provides help functions to the user that are reachable through the menu Help.

(OfficeDev /ContextMenulnterceptor.java)

import com.sun.star.ui.*;

import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.beans.XPropertySet;

import com.sun.star.container.XIndexContainer;
import com.sun.star.uno.UnoRuntime;

import com.sun.star.uno.Exception;

import com.sun.star.beans.UnknownPropertyException;
import com.sun.star.lang.IllegalArgumentException;

public class ContextMenulnterceptor implements XContextMenuInterceptor {

public ContextMenuInterceptorAction notifyContextMenuExecute (
com.sun.star.ui.ContextMenuExecuteEvent aEvent) throws RuntimeException {

try {

// Retrieve context menu container and query for service factory to
// create sub menus, menu entries and separators
com.sun.star.container.XIndexContainer xContextMenu = aEvent.ActionTriggerContainer;
com.sun.star.lang.XMultiServiceFactory xMenuElementFactory =
(com.sun.star.lang.XMultiServiceFactory)UnoRuntime.queryInterface (
com.sun.star.lang.XMultiServiceFactory.class, xContextMenu) ;
if (xMenuElementFactory != null) {
// create root menu entry for sub menu and sub menu
com.sun.star.beans.XPropertySet xRootMenuEntry =
(XPropertySet)UnoRuntime.queryInterface (
com.sun.star.beans.XPropertySet.class,
xMenuElementFactory.createInstance ("com.sun.star.ui.ActionTrigger "));

// create a line separator for our new help sub menu
com.sun.star.beans.XPropertySet xSeparator =
(com.sun.star.beans.XPropertySet)UnoRuntime.queryInterface (
com.sun.star.beans.XPropertySet.class,
xMenuElementFactory.createInstance("com.sun.star.ui.ActionTriggerSeparator"))

Short aSeparatorType = new Short (ActionTriggerSeparatorType.LINE);
xSeparator.setPropertyValue ("SeparatorType", (Object)aSeparatorType);

// query sub menu for index container to get access
com.sun.star.container.XIndexContainer xSubMenuContainer =
(com.sun.star.container.XIndexContainer)UnoRuntime.queryInterface (
com.sun.star.container.XIndexContainer.class,
xMenuElementFactory.createInstance (
"com.sun.star.ui.ActionTriggerContainer"));

// intialize root menu entry "Help"

xRootMenuEntry.setPropertyValue ("Text", new String("Help"));
xRootMenuEntry.setPropertyValue ("CommandURL", new String("slot:5410"));
xRootMenuEntry.setPropertyValue ("HelpURL", new String("5410"));
xRootMenuEntry.setPropertyValue ("SubContainer", (Object)xSubMenuContainer);

// create menu entries for the new sub menu
// intialize help/content menu entry
// entry "Content"

XPropertySet xMenuEntry = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xMenuElementFactory.createInstance (

320 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/XContextMenuInterceptor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuInterceptorAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuInterceptorAction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/ui/ContextMenuInterceptorAction.html

"com.sun.star.ui.ActionTrigger "));

xMenuEntry.setPropertyValue ("Text", new String("Content"));
xMenuEntry.setPropertyValue ("CommandURL", new String("slot:5401"));
xMenuEntry.setPropertyValue ("HelpURL", new String("5401"));

// insert menu entry to sub menu
xSubMenuContainer.insertByIndex (0, (Object)xMenuEntry);

// intialize help/help agent
// entry "Help Agent"
xMenuEntry = (com.sun.star.beans.XPropertySet)UnoRuntime.queryInterface (
com.sun.star.beans.XPropertySet.class,
xMenuElementFactory.createInstance (

"com.sun.star.ui.ActionTrigger "));
xMenuEntry.setPropertyValue ("Text", new String("Help Agent"));
xMenuEntry.setPropertyValue ("CommandURL", new String("slot:5962"));
xMenuEntry.setPropertyValue ("HelpURL", new String("5962"));

// insert menu entry to sub menu
xSubMenuContainer.insertByIndex(1, (Object)xMenuEntry);

// intialize help/tips
// entry "Tips"
xMenuEntry = (com.sun.star.beans.XPropertySet)UnoRuntime.queryInterface (
com.sun.star.beans.XPropertySet.class,
xMenuElementFactory.createInstance (
"com.sun.star.ui.ActionTrigger "));
xMenuEntry.setPropertyValue ("Text", new String("Tips"));
xMenuEntry.setPropertyValue ("CommandURL", new String("slot:5404"));
xMenuEntry.setPropertyValue ("HelpURL", new String("5404"));

// insert menu entry to sub menu
xSubMenuContainer.insertByIndex (2, (Object)xMenuEntry);

// add separator into the given context menu
xContextMenu.insertByIndex (0, (Object)xSeparator);

// add new sub menu into the given context menu
xContextMenu.insertByIndex (0, (Object)xRootMenuEntry);

// The controller should execute the modified context menu and stop notifying other
// interceptors.
return com.sun.star.ui.ContextMenulnterceptorAction.EXECUTE MODIFIED ;
}
}
catch (com.sun.star.beans.UnknownPropertyException ex) {
// do something useful
// we used a unknown property
}
catch (com.sun.star.lang.IndexOutOfBoundsException ex) {
// do something useful
// we used an invalid index for accessing a container
}
catch (com.sun.star.uno.Exception ex) {
// something strange has happend!
}
catch (java.lang.Throwable ex) {
// catch java exceptions - do something useful

}

return com.sun.star.ui.ContextMenulnterceptorAction.IGNORED;

4.8 File Naming Conventions

As a recommendation, UNO component libraries should be named according to the following
naming scheme:

<NAME> [<VERSION>] .uno. (so|dll|dylib|jar)

This recommendation applies to shared libraries and Java archives,which are deployed by the
Extension Manager as described in section 5 Extensions.

This file name convention results in file names such as:

321

322

component.uno.so
component1.uno.dll
component(.1.3.uno.dylib
component.uno.jar

<NAME> should be a descriptive name, optionally extended by version information as shown
below, followed by the characters .uno and the necessary file extension.

The term .uno is placed next to the platform-specific extension to emphasize that this is a special
type of shared library, jar, or zip file.

Usually a shared library or jar has to be registered with UNO to be useful, as its shared library
interface only consists of the component operations.

Since the given naming scheme is only a suggestion, there might be component shared libraries
that do not contain the .uno addition in their names. Therefore, no tool should build assumptions
on whether a shared library name contains .uno or not.

<VERSION> is optional and should be in the form:

<VERSION> = <MAJOR> [.<MINOR> [.<MICRO>]]
<MAJOR> = <NUMBER>

<MINOR> = <NUMBER>

<MICRO> = <NUMBER>

<NUMBER> = 0 | 1=9 ©=9*

Using the version tag in the file name of a shared library or jar is primarily meant for simple
components that are not part of an extension deployed by the Extension Manager. Such components
are usually made up of a single shared library, and different file names for different versions can
be useful, for instance in bug reports.

The version of components that are part of the OpenOffice.org installation is already well defined
by the version and build number of the installed OpenOffice.org itself.

It is up to the developer how the version scheme is used. You can count versions of a given compo-
nent shared library using MAJOR alone, or add MINOR and MICRO as needed.

If version is used, it must be placed before the platform-specific extension, never after it. Under Linux and
Solaris, there is a convention to add a version number after the .so, but that version number has different
semantics than the version number used here. In short, those version numbers change whenever the shared
library’s interface changes, whereas the UNO component interface with the component operations
component getFactory () etc. never changes.

The following considerations give an overview of ways that a component can evolve:

A component shared library’s interface, as defined by the component operations such as
component_getFactory () is assumed to be stable.

The UNO services offered by a component can change:

compatibly : by changing an implementation in the component file but adhering to its specifica-
tion, or by adding a new UNO service implementation to a component file

incompatibly: by removing an implementation, or by removing a UNO service from a compo-
nent

indirectly compatibly: when one of the UNO services changes compatibility and the component
is adapted accordingly. This can happen when a service specification is extended by additional
optional interfaces, and the component is altered to support these interfaces.

OpenOffice.org 2.3 Developer's Guide « June 2007

When an implementation in a component file is changed, for instance when a bug is fixed, such a
change will typically be compatible unless clients made themselves dependent on the bug. This can
happen when clients considered the bug a feature or worked around the bug in a way that made
them dependent on the bug. Therefore developers must be careful to program according to the
specification, not the implementation.

Finally, a component shared library can change its dependencies on other shared libraries. Exam-
ples of such dependencies are:

C/C++ runtime libraries
such as libc.s0.6, libstdc++.50.3.0.1, and libstlport_gcc.so

UNO runtime libraries
such as libcppu.so0.3.1.0 and libcppuhelpergcc3.50.3.1.0

OpenOffice.org libraries
such as libsvx644li.so

Dependency changes are typically incompatible, as they rely on compatible or incompatible
changes of the component’s environment.

4.9 Deployment Options for Components

Component are usually distributed and deployed as extensions (see chapter 5 Extensions).
However, by using legacy tools, such as regcomp, and regmerge, it is also possible to install
components, which can be more convenient during development.

4.9.1 Background: UNO Registries

This section explains the necessary steps to deploy new UNO components manually into an
installed OpenOffice.org. Background information is provided and the tools required to test
deployment are described. The developer and deployer of the component should be familiar with
this section. If the recommendations provided are accepted, interoperability of components of
different vendors can be achieved easily.

UNO registries store binary data in a tree-like structure. The stored data can be accessed within a
registry programmatically through the com.sun.star.registry.SimpleRegistry service,
however this is generally not necessary. Note that UNO registries have nothing to do with the
Windows registry, except that they follow a similar concept for data storage.

UNO-registries mainly store two types of data :

Type-library
To invoke UNO calls from BASIC or through an interprocess connection, the core UNO bridges
need information about the used data types. UNO stores this information into a type library, so
that the same data is reusable from any bridge. This is in contrast to the CORBA approach,
where code is generated for each data type that needs to be compiled and linked into huge
libraries. Every UNOIDL type description is stored as a binary large object (BLOB) that is inter-

preted by the com.sun.star.reflection.TypeDescriptionProvider service.

Information about registered components
One basic concept of UNO is to create an instance of a component simply by its service name
through the ServiceManager. The association between the service name and the shared library
or .jar-file where the necessary compiled code is found is stored into a UNO-registry.

323

http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/TypeDescriptionProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/TypeDescriptionProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/reflection/TypeDescriptionProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/registry/SimpleRegistry.html
http://api.openoffice.org/docs/common/ref/com/sun/star/registry/SimpleRegistry.html
http://api.openoffice.org/docs/common/ref/com/sun/star/registry/SimpleRegistry.html

The structure of this data is provided below. Future versions of OpenOffice.org will probably
store this information in an XML file that will make it modifiable using a simple text editor.

Both types of data are necessary to run a UNO-C++ process. If the types of data are not present, it
could lead to termination of the program. UNO processes in general open their registries during
startup and close them when the process terminates. Both types of data are commonly stored in a
file with an .rdb suffix (rdb=registry database), but this suffix is not mandatory.

UNO Type Library

All type descriptions must be available within the registry under the /UCR main key (UCR = Uno
Core Reflection) to be usable in a UNO C++ process . Use the regview tool to view the file <office-
path>/program/ types .rdb. The reguview tool comes with the OpenOffice.org SDK.

For instance:

$ regview types.rdb /UCR

prints all type descriptions used within the office to stdout. To check if a certain type is included
within the registry, invoke the following command:

$ regview types.rdb /UCR/com/sun/star/bridge/XUnoUrlResolver

/UCR/com/sun/star/bridge/XUnoUrlResolver
Value: Type = RG_VALUETYPE_ BINARY

Size = 461

Data = minor version: 0

major version: 1

type: 'interface'

name: 'com/sun/star/bridge/XUnoUrlResolver'
super name: 'com/sun/star/uno/XInterface'
Doku: ""

number of fields: 0

number of methods: 1

method #0: com/sun/star/uno/XInterface resolve([in] string sUnoUrl)

raises com/sun/star/connection/NoConnectException,
com/sun/star/connection/ConnectionSetupException,
com/sun/star/lang/IllegalArgumentException

Doku: ""

number of references: 0

The reguview tool decodes the format of the BLOB containing the type description and presents it in
a readable form.

Component Registration

The UNO component provides the data about what services are implemented. In order not to load
all available UNO components into memory when starting a UNO process, the data is assembled
once during setup and stored into the registry. The process of writing this information into a
registry is called component registration. The tools used to perform this task are discussed below.

For an installed OpenOffice.org, the services.rdb contains the component registration information.
The data is stored within the /IMPLEMENTATIONS and /SERVICES key. The code below shows
a sample SERVICES key for the com. sun.star.io.Pipe service.

$ regview services.rdb /SERVICES/com.sun.star.io.Pipe

/SERVICES/com.sun.star.io.Pipe
Value: Type = RGivALUETYPEisTRINGLIST

Size = 38
Len =1
Data = 0 = "com.sun.star.comp.io.stm.Pipe"

The code above contains one implementation name, but it could contain more than one. In this
case, only the first is used. The following entry can be found within the IMPLEMENTATIONS section:

324 OpenOffice.org 2.3 Developer's Guide June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/io/Pipe.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/Pipe.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/Pipe.html

$ regview services.rdb /IMPLEMENTATIONS/com.sun.star.comp.io.stm.Pipe

/IMPLEMENTATIONS/com.sun.star.comp.io.stm.Pipe
/ UNO
/ ACTIVATOR

Value: Type RG_VALUETYPE_STRING

Size = 34
Data = "com.sun.star.loader.SharedLibrary"
/ SERVICES

/ com.sun.star.io.Pipe

/ LOCATION
Value: Type
Size
Data

RG_VALUETYPE_STRING
8
"stm.dll"

The implementations section holds three types of data.

1. The loader to be used when the component is requested at runtime (here
com.sun.star.loader.SharedLibrary).

2. The services supported by this implementation.

3. The URL to the file the loader uses to access the library (the url may be given relative to the
OpenOffice.org library directory for native components as it is in this case).

4.9.2 Command Line Registry Tools

There are various tools to create, modify and use registries. This section shows some common use
cases. The regmerge tool is used to merge multiple registries into a sub-key of an existing or new
registry. For instance:

$ regmerge new.rdb / testl.rdb test2.rdb

merges the contents of test1.rdb and test2.rdb under the root key / of the registry database new.rdb .
The names of the keys are preserved, because both registries are merged into the root-key. In case
new.rdb existed before, the previous contents remain in new.rdb unless an identical key names exist
in test1.rdb and test2.rdb. In this case, the content of these keys is overwritten with the ones in
test1.rdb or test2.rdb. So the above command is semantically identical to:

$ regmerge new.rdb / testl.rdb
$ regmerge new.rdb / test2.rdb

The following command merges the contents of test1.urd and test2.urd under the key /UCR into the
file myapp_types.rdb.

$ regmerge myapp types.rdb /UCR testl.urd test2.urd

The names of the keys in test1.urd and test2.urd should only be added to the /UCR key. This is a
real life scenario as the files produced by the idl-compiler have a .urd-suffix. The regmerge tool
needs to be run before the type library can be used in a program, because UNO expects each type
description below the /UCR key.

Component Registration Tool

Components can be registered using the regcomp tool. Below, the components necessary to estab-
lish an interprocess connection are registered into the myapp_services.rdb.

$ regcomp -register -r myapp services.rdb \
-c uuresolver.dll
-c brdgfctr.dll
-c acceptor.dll
-c connectr.dll
-c remotebridge.dll

P

325

http://api.openoffice.org/docs/common/ref/com/sun/star/loader/SharedLibrary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/SharedLibrary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/SharedLibrary.html

326

The \ means command line continuation. The option -r gives the registry file where the informa-
tion is written to. If it does not exist, it is created, otherwise the new data is added. In case there are
older keys, they are overwritten. The registry file (here myapp_services.rdb) must NOT be opened by
any other process at the same time. The option -c is followed by a single name of a library that is
registered. The -c option can be given multiple times. The shared libraries registered in the
example above are needed to use the UNO interprocess bridge.

Registering a Java component is currently more complex. It works only in an installed office envi-
ronment, the <OfficePath>/program must be the current working directory, the office setup must
point to a valid Java installation that can be verified using jumsetup from <OfficePath>/program, and
Java must be enabled. See Tools - Options - General - Security. In OpenOffice.org2.0, make sure
that a Java is selected by using the Java panel of the options dialog (Tools-Options -
OpenOffice.org Java).

The office must not run. On Unix, the LD_LIBRARY_PATH environment variable must addition-
ally contain the directories listed by the javaldx tool (which is installed with the office).

Copy the regcomp executable into the <officepath>/program directory. The regcomp tool must then be
invoked using the following parameters :
$ regcomp -register -r your registry.rdb \

-br <officepath>/program/services.rdb \

-1 com.sun.star.loader.Java2 \
-c file:///d:/test/JavaTestComponent.jar

The option -r (registry) tells regcomp where to write the registration data and the -br (bootstrap
registry) option points regcomp to a registry to read common types from. The regcomp tool does not
know the library that has the Java loader. The -1 option gives the service name of the loader to use
for the component that must be com.sun.star.loader.Java2. The option can be omitted for C++
components, because regcomp defaults to the com.sun.star.loader.SharedLibrary loader. The
option -c gives the file url to the Java component.

File urls can be given absolute or relative. Absolute file urls must begin with file:/// . All other
strings are interpreted as relative file urls. The ‘3rdpartYcomp/filterxy.dll’,
"../../3rdpartycomp/filterxyz.dll’, and filterxyz.dll’ are a few examples. Relative file urls are interpreted
relative to all paths given in the PATH variable on Windows and LD_LIBRARY_PATH variable on
Unix.

Java components require an absolute file URL for historical reasons.

The regcomp tool should be used only during the development and testing phase of components. For
deploying final components, the Extension Manager should be used instead. See 5 Extensions.

UNO Type Library Tools

There are several tools that currently access the type library directly. They are encountered when
new UNOIDL types are introduced.

- idlc, Compiles .idl files into .urd-registry-files.

- cppumaker , Generates C++ header for a given UNO type list from a type registry used with the
UNO C++ binding.

- javamaker , Generates Java .class files for a given type list from a type registry.

- rdbmaker , Creates a new registry by extracting given types (including dependent types) from
another registry, and is used for generating minimal, but complete type libraries for compo-
nents. It is useful when building minimal applications that use UNO components.

- regcompare , Compares a type library to a reference type library and checks for compatibility.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/loader/SharedLibrary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/SharedLibrary.html
http://api.openoffice.org/docs/common/ref/com/sun/star/loader/SharedLibrary.html

- regmerge , Merges multiple registries into a certain sub-key of a new or already existing registry.

4.9.3 Manual Component Installation

Manually Merging a Registry and Adding it to uno.ini or soffice.ini

Registry files used by OpenOffice.org are configured within the uno(.ini | rc) file found in the
program directory. After a default OpenOffice.org installation, the files look like this:

?ggéigir;p]

UNO_TYPES=SORIGIN/types.rdb

UNO_SERVICES=$ORIGIN/services.rdb

The two UNO variables are relevant for UNO components. The UNO_TYPES variable gives a
space separated list of type library registries, and the UNO_SERVICES variable gives a space sepa-
rated list of registries that contain component registration information. These registries are opened
read-only. The same registry may appear in UNO_TYPES and UNO_SERVICES variables. The
$ORIGIN points to the directory where the ini/rc file is located.

OpenOffice.org uses the types.rdb as a type and the services.rdb as a component registration infor-
mation repository. When a programmer or software vendor releases a UNO component, the
following files must be provided at a minimum:

A file containing the code of the new component, for instance a shared library, a jar file, or
maybe a python file in the future.

A registry file containing user defined UNOIDL types, if any.

(optional) A registry file containing registration information of a pre-registered component. The
registry provider should register the component with a relative path to be beneficial in other
OpenOffice.org installations.

The latter two can be integrated into a single file.

In fact, a vendor may release more files, such as documentation, the .id! files of the user defined types, the
source code, and configuration files. While every software vendor is encouraged to do this, there are
currently no recommendations how to integrate these files into OpenOffice.org. These type of files are
ignored in the following paragraphs. These issues will be addressed in next releases of OpenOffice.org.

The recommended method to add a component to OpenOffice.org manually is described in the
following steps:

1. Copy new shared library components into the <OfficePath>/program directory and new Java
components into the <OfficePath>/program/classes directory.

2. Copy the registry containing the type library into the <OfficePath>/program directory, if needed
and available.

3. Copy the registry containing the component registration information into the
<OfficePath>/program directory, if required. Otherwise, register the component with the regcomp
command line tool coming with the OpenOffice.org SDK into a new registry.

4. Modify the uno(.inilrc) file, and add the type registry to the UNO_TYPES variable and the
component registry to the UNO_SERVICES variable. The new uno(.ini | rc) might look like this:
[Bootstrap]

UNO_TYPES=SORIGIN/types.rdb SORIGIN/filterxyz types.rdb
UNO_SERVICES=$ORIGIN/services.rdb SORIGIN/filterxyz services.rdb

327

328

After these changes are made, every office that is restarted can use the new component. The
uno(.ini | rc) changes directly affect the whole office network installation. If adding a component
only for a single user, pass the modified UNO_TYPES and UNO_SERVICES variables per
command line. An example might be:

$ soffice “-env:UNO TYPES=SORIGIN/types.rdb SORIGIN/filterxyz types.rdb“

“—env:UNOiSERVICES:$ORIGIN/services.rdb
SORIGIN/filter xyz services.rdb”).

4.9.4 Bootstrapping a Service Manager

Bootstrapping a service manager means to create an instance of a service manager that is able to
instantiate the UNO objects needed by a user. All UNO applications, that want to use the UnoUrl-
Resolver for connections to the office, have to bootstrap a local service manager in order to create a
UnoUrlResolver object. If developers create a new language binding, for instance for a scripting
engine, they have to find a way to bootstrap a service manager in the target environment.

There are many methods to bootstrap a UNO C++ application, each requiring one or more registry
files to be prepared. Once the registries are prepared, there are different options available to boot-
strap your application. A flexible approach is to use UNO bootstrap parameters and the
defaultBootstrap InitialComponentContext () function.

#include <cppuhelper/bootstrap.hxx>

using namespace com::sun::star::uno;
using namespace com::sun::star::lang;
using namespace rtl;
using namespace cppu;
int main()
{
// create the initial component context
Reference< XComponentContext > rComponentContext =
defaultBootstrap_InitialComponentContext () ;

// retrieve the service manager from the context
Reference< XMultiComponentFactory > rServiceManager =
rComponentContext () ->getServiceManager () ;

// instantiate a sample service with the service manager.
Reference< XInterface > rInstance =
rServiceManger->createInstanceWithContext (
OUString: :createFromAscii ("com.sun.star.bridge.UnoUrlResolver"),
rComponentContext);

// continue to connect to the office
}
No arguments, such as a registry name, are passed to this function. These are given using bootstrap
parameters . Bootstrap parameters can be passed through a command line, an . ini file or using envi-
ronment variables.

For bootstrapping the UNO component context, the following two variables are relevant:

1) UNO_TYPES
Gives a space separated list of type library registry files. Each registry must be given as an abso-
lute or relative file url. Note that some special characters within the path require encoding, for
example, a space must become a %20. The registries are opened in read-only.

2) UNO_SERVICES
Gives a space separated list of registry files with component registration information. The regis-
tries are opened in read-only. The same registry may appear in UNO_TYPES and
UNO_SERVICES variables.

An absolute file URL must begin with the file:/// prefix (on windows, it must look like
file:///c:/mytestregistry.rdb). To make a file URL relative, the file:/// prefix must be omitted. The rela-
tive url is interpreted relative to the current working directory.

OpenOffice.org 2.3 Developer's Guide « June 2007

Within the paths, use special placeholders.

Bootstrap variable Meaning

$SYSUSERHOME Path of the user’s home directory (see osl_getHomeDir())
$SYSBINDIR Path to the directory of the current executable.

$ORIGIN Path to the directory of the ini/rc file.

$SYSUSERCONFIG Path to the directory where the user’s configuration data is stored (see

osl_getConfigDir())

The advantage of this method is that the executable can be configured after it has been built. The
OpenOffice.org bootstraps the service manager with this mechanism.

Consider the following example:

A tool needs to be written that converts documents between different formats. This is achieved by
connecting to OpenOffice.org and doing the necessary conversions. The tool is named docconv. In
the code, the defaultBootstrap InitialComponentContext () function is used as described
above to create the component context. Two registries are prepared: docconv_services.rdb with the
registered components and types.rdb that contains the types coming with OpenOffice.org. Both files
are placed beside the executable. The easiest method to configure the application is to create a
docconv(.ini | rc) ascii file in the same folder as your executable, that contains the following two
lines:

UNO_TYPES=SORIGIN/types.rdb

UNO_SERVICES=$ORIGIN/docconv_services.rdb

No matter where the application is started form, it will always use the mentioned registries. Note
that this also works on different machines when the volume is mapped to different location mount
points as $SYSBINDIR is evaluated at runtime.

The second possibility is to set UNO_TYPES and UNO_SERVICES as environment variables, but
this method has drawbacks. All UNO applications started with this shell use the same registries.

The third possibility is to pass the variables as command line parameters, for instance

docconv -env:UNO TYPES=$ORIGIN/types.rdb -env:
UNO_SERVICES=$ORIGIN/docconv_services.rdb

Note that on UNIX shells, you need to quote the $ with a backslash \.

The command line arguments do not need to be passed to the UNO runtime, because it is generally
retrieved from some static variables. How this is done depends on the operating system, but it is
hidden from the programmer. The docconv executable should ignore all command line parameters
beginning with ~-env:’. The easiest way to do this is to ignore argc and argv[] and to use the

rtl getCommandLineArg () functions defined in rtl/process.h header instead which automatically
strips the additional parameters.

1) Combine the methods mentioned above. Command line parameters take precedence over .ini
file variables and .ini file parameter take precedence over environment variables. That way, it is
possible to overwrite the UNO_SERVICES variable on the command line for one invocation of
the program only.

4.9.5 Special Service Manager Configurations

The com.sun.star.container.XSet interface allows the insertion or removal of
com.sun.star.lang.XSingleServiceFactory Or com.sun.star.lang.XSingleComponentFac-
tory implementations into or from the service manager at runtime without making these changes
persistent. When the office applications terminate, all the changes are lost. The inserted object must

329

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleComponentFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XSingleServiceFactory.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XSet.html

support the com. sun.star.lang.XServicelInfo interface. This interface returns the same infor-
mation as the XServicelnfo interface of the component implementation which is created by the
component factory.

With this feature, a running office can be connected, a new factory inserted into the service
manager and the new service instantiated without registering it beforehand. This method of hard
coding the registered services is not acceptable with OpenOffice.org, because it must be extended
after compilation.

Java applications can use a native persistent service manager in their own process using JNI (see
3.4.1 Professional UNO - UNO Language Bindings - Java Language Binding), or in a remote process.
But note, that all services will be instantiated in this remote process.

Dynamically Modifying the Service Manager

Bootstrapping in pure Java is simple, by calling the static runtime method createInitialCompo-
nentContext () from the Bootstrap class. The following small test program shows how to insert
service factories into the service manager at runtime. The sample uses the Java component from
the section 4.5.6 Writing UNO Components - Simple Component in Java - Storing the Service Manager
for Further Use. The complete code can be found with the JavaComp sample component.

The example shows that there is the possibility to control through command line parameter,
whether the service is inserted in the local Java service manager or the remote office service
manager. If it is inserted into the office service manager, access the service through OpenOffice.org
Basic. In both cases, the component runs in the local Java process.

If the service is inserted into the office service manager, instantiate the component through
OpenOffice.org Basic calling createUnoService (" JavaTestComponentB"), as long as the Java
process is not terminated. Note, to add the new types to the office process by one of the above
explained mechanisms, use uno.ini.

public static void insertIntoServiceManager (
XMultiComponentFactory serviceManager, Object singleFactory)
throws com.sun.star.uno.Exception {
XSet set = (XSet) UnoRuntime.queryInterface (XSet.class, serviceManager) ;
set.insert (singleFactory) ;

}

public static void removeFromServiceManager (
XMultiComponentFactory serviceManager, Object singleFactory)
throws com.sun.star.uno.Exception {
XSet set = (XSet) UnoRuntime.queryInterface(XSet.class, serviceManager) ;
set.remove (singleFactory) ;

}

public static void main (String[] args) throws java.lang.Exception {
if (args.length != 1) {
System.out.println ("usage: RunComponent local|uno-url");
System.exit (1) ;
}
XComponentContext xLocalComponentContext =
Bootstrap.createInitialComponentContext (null) ;

// initial serviceManager
XMultiComponentFactory xLocalServiceManager = xLocalComponentContext.getServiceManager () ;

XMultiComponentFactory xUsedServiceManager = null;
XComponentContext xUsedComponentContext = null;
if (args[0].equals("local")) {
xUsedServiceManager = xLocalServiceManager;
xUsedComponentContext = xLocalComponentContext;

System.out.println("Using local servicemanager") ;
// now the local servicemanager is used !
}
else {
// otherwise interpret the string as uno-url
Object xUrlResolver = xLocalServiceManager.createInstanceWithContext (
"com.sun.star.bridge.UnoUrlResolver", xLocalComponentContext) ;

330 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XServiceInfo.html

XUnoUrlResolver urlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface (
XUnoUrlResolver.class, xUrlResolver);

Object initialObject = urlResolver.resolve (args([0]);

xUsedServiceManager = (XmultiComponentFactory) UnoRuntime.queryInterface (
XMultiComponentFactory.class, initialObject);

System.out.println("Using remote servicemanager");
// now the remote servicemanager is used.

}

// retrieve the factory for the component implementation
Object factory = TestServiceProvider._ getServiceFactory(
"componentsamples.TestComponentB", null, null);

// insert the factory into the servicemanager
// from now on, the service can be instantiated !
insertIntoServiceManager (xUsedServiceManager, factory);

// Now instantiate one of the services via the servicemanager !
Object objTest= xUsedServiceManager.createInstanceWithContext (
"JavaTestComponentB", xUsedComponentContext) ;

// query for the service interface
XSomethingB xs= (XSomethingB) UnoRuntime.queryInterface (
XSomethingB.class, objTest);

// and call the test method.
String s= xs.methodOne ("Hello World") ;
System.out.println(s) ;

// wait until return is pressed
System.out.println("Press return to terminate");
while (System.in.read() != 10);

// remove it again from the servicemanager, otherwise we have
// a dangling reference (in case we use the remote service manager
removeFromServiceManager (xUsedServiceManager, factory);

// quit, even when a remote bridge is running
System.exit (0) ;

Creating a ServiceManager from a Given Registry File

To create a service manager from a given registry, use a single registry that contains the type
library and component registration information. Hard code the name of the registry in the program
and use the createRegistryServiceFactory () function located in the cppuhelper library.

#include <cppuhelper/servicefactory.hxx>

using namespace com::sun::star::uno;
using namespace com::sun::star::lang;
using namespace rtl;
using namespace cppu;
int main()
{
// create the service manager on the registry test.rdb
Reference< XMultiServiceFactory > rServiceManager =
createRegistryServiceFactory(OUString::createFromAscii(“test.rdb”));

// instantiate a sample service with the service manager.
Reference< XInterface > rlInstance =
rServiceManger->createlInstance (
OUString: :createFromAscii (“com.sun.star.bridge.UnoUrlResolver”));

// continue to connect to the office

This instantiates the old style service manager without the possibility of offering a component context. In
future versions, (642) you will be able to use the new service manager here.

331

332

4.10 The UNO Executable

In chapter 3.4.2 Professional UNO - UNO Language Bindings - C++ Language Binding, several
methods to bootstrap a UNO application were introduced. In this section, the option UNO execut-
able is discussed. With UNO executable, there is no need to write executables anymore, instead
only components are developed. Code within executables is locked up, it can only run by starting
the executable, and it can never be used in another context. Components offer the advantage that
they can be used from anywhere. They can be executed from Java or from a remote process.

For these cases, the com. sun.star.lang.XMain interface was introduced. It has one method:

/* module com.sun.star.lang.XMain */
interface XMain: com::sun::star::uno::XInterface
{
long run([in] sequence< string > aArguments) ;
}i
Instead of writing an executable, write a component and implement this interface. The component
gets the fully initialized service manager during instantiation. The run () method then should do
what amain () function would have done. The UNO executable offers one possible infrastructure

for using such components.
Basically, the uno tool can do two different things:

1) Instantiate a UNO component which supports the com.sun.star.lang.XMain interface and
executes the run () method.

// module com::sun::star::lang
interface XMain: com::sun::star::uno::XInterface
{
long run([in] sequence< string > aArguments);
i
2) Export a UNO component to another process by accepting on a resource, such as a tcp/ip
socket or named pipe, and instantiating it on demand.

In both cases, the uno executable creates a UNO component context which is handed to the instan-
tiated component. The registries that should be used are given by command line arguments. The
goal of this tool is to minimize the need to write executables and focus on writing components. The
advantage for component implementations is that they do not care how the component context is
bootstrapped. In the future there may be more ways to bootstrap the component context. While
executables will have to be adapted to use the new features, a component supporting XMain can be
reused.

Standalone Use Case

Simply typing uno gives the following usage screen :

uno (-c ComponentImplementationName -1 LocationUrl | -s ServiceName)
[-ro ReadOnlyRegistryl] [-ro ReadOnlyRegistry2] ... [-rw ReadWriteRegistry]
[-u uno: (socket [, host=HostName] [, port=nnn] |pipe[, name=PipeName]) ;urp;Name
[--singleaccept] [--singleinstance]]

[-- Argumentl Argument2 ...]

Choosing the implementation to be instantiated
Using the option -s servicename gives the name of the service which shall be instantiated. The
uno executable then tries to instantiate a service by this name, using the registries as listed
below.

Alternatively, the -1 and -c options can be used. The -1 gives an url to the location of the shared
library or .jar file, and -c the name of the desired service implementation inside the component.
Remember that a component may contain more than one implementation.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html

Choosing the registries for the component context (optional)
With the option -ro, give a file url to a registry file containing component’s registration informa-
tion and/or type libraries. The -ro option can be given multiple times. The -rw option can only
be given once and must be the name of a registry with read/write access. It will be used when
the instantiated component tries to register components at runtime. This option is rarely
needed.

Note that the uno tool ignores bootstrap variables, such as UNO_TYPES and UNO_SERVICES.

The UNO URL (optional)
Giving a UNO URL causes the uno tool to start in server mode, then it accepts on the connec-
tion part of the UNO URL. In case another process connects to the resource (tcp/ip socket or
named pipe), it establishes a UNO interprocess bridge on top of the connection (see also 3.3.1
Professional UNO - UNO Concepts - UNO Interprocess Connections). Note that urp should always
be used as protocol. An instance of the component is instantiated when the client requests a
named object using the name, which was given in the last part of the UNO URL.

Option --singleaccept
Only meaningful when a UNO URL is given. It tells the uno executable to accept only one
connection, thus blocking any further connection attempts.

Option --singleinstance
Only meaningful when a UNO URL is given. It tells the uno executable to always return the
same (first) instance of the component, thus multiple processes communicate to the same
instance of the implementation. If the option is not given, every getInstance () call at the
com.sun.star.bridge.XBridge interface instantiates a new object.

Option -~ (double dash)
Everything following -- is interpreted as an option for the component itself. The arguments are
passed to the component through the initialize () call of com.sun.star.lang.XInitial-
ization interface.

The uno executable currently does not support the bootstrap variable concept as introduced by 3.4.2 Profes-
sional UNO - UNO Language Bindings - C++ Language Binding. The uno registries must be given explicitly
given by command line.

The following example shows how to implement a Java component suitable for the uno executable.

import com.sun.star.uno.XComponentContext;
import com.sun.star.comp.loader.FactoryHelper;
import com.sun.star.lang.XSingleServiceFactory;
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.registry.XRegistryKey;

public class UnoExeMain implements com.sun.star.lang.XMain
{
final static String __ serviceName = "MyMain";
XComponentContext ctx;

public UnoExeMain (XComponentContext ctx)

{
// in case we would need the component context !
_ctx = ctx;

}

public int run(/*IN*/String[] aArguments)
{
System.out.println("Hello world !"™);
return 0;

}

public static XSingleServiceFactory _ getServiceFactory (
String implName, XMultiServiceFactory multiFactory, XRegistryKey regKey)
{

XSingleServiceFactory xSingleServiceFactory = null;

if (implName.equals (UnoExeMain.class.getName ()))

333

http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XInitialization.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridge.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridge.html
http://api.openoffice.org/docs/common/ref/com/sun/star/bridge/XBridge.html

xSingleServiceFactory =
FactoryHelper.getServiceFactory (
UnoExeMain.class, UnoExeMain. serviceName, multiFactory, regKey);
}
return xSingleServiceFactory;

}

public static boolean _ writeRegistryServiceInfo (XRegistryKey regKey)
{
boolean b = FactoryHelper.writeRegistryServiceInfo (
UnoExeMain.class.getName (),
UnoExeMain. serviceName, regKey);
return b;

The class itself inherits from com.sun.star.lang.XMain. It implements a constructor with the
com.sun.star.uno.XComponentContext interface and stores the component context for future
use. Within its run () method, it prints 'Hello World". The last two mandatory functions are respon-
sible for instantiating the component and writing component information into a registry. Refer to
4.5.6 Writing UNO Components - Simple Component in Java - Storing the Service Manager for Further
Use for further information.

The code needs to be compiled and put into a .jar file with an appropriate manifest file:

RegistrationClassName: UnoExeMain

These commands create the jar:

javac UnoExeMain
jar -cvfm UnoExeMain.jar Manifest UnoExeMain.class

To be able to use it, register it with the following command line into a separate registry file (here
test.rdb). The <OfficePath>/program directory needs to be the current directory, and the regcomp and
uno tools must have been copied into this directory.
regcomp -register \

-br <officepath>/program/services.rdb \

-r test.rdb \

-c file:///c:/devmanual/Develop/samples/unoexe/UnoExeMain.jar \
-1 com.sun.star.loader.Java2

The \ means command line continuation.
The component can now be run:
uno -s MyMain -ro types.rdb -ro services.rdb -ro test.rdb

This command should give the output "hello world !"

Server Use Case

This use case enables the export of any arbitrary UNO component as a remote server. As an
example, the com.sun.star.io.Pipe service is used which is already implemented by a compo-
nent coming with the office. It exports an com.sun.star.io.XOutputStreamand a
com.sun.star.io.XInputStream interface. The data is written through the output stream into the
pipe and the same data from the input stream is read again. To export this component as a remote
server, switch to the <OfficePath>/program directory and issue the following command line.

i:\o641l\program>uno -s com.sun.star.io.Pipe -ro types.rdb -ro services.rdb -u
uno:socket,host=0,port=2002;urp;test

> accepting socket,host=0,port=2083...

Now a client program can connect to the server. A client may look like the following;:

import com.sun.star.lang.XServiceInfo;
import com.sun.star.uno.XComponentContext;
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.io.XOutputStream;

334 OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XInputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/XOutputStream.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/Pipe.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/Pipe.html
http://api.openoffice.org/docs/common/ref/com/sun/star/io/Pipe.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XMain.html

import com.sun.star.io.XInputStream;
import com.sun.star.uno.UnoRuntime;

// Note: This example does not do anything meaningful, it shall just show,

// how to import an arbitrary UNO object from a remote process.
class UnoExeClient {
public static void main(String [] args) throws java.lang.Exception {
if (args.length != 1) {
System.out.println("Usage : java UnoExeClient uno-url");
System.out.println (" The imported object must support the com.sun.star.io.Pipe service");
return;

}

XComponentContext ctx =
com.sun.star.comp.helper.Bootstrap.createInitialComponentContext (null) ;

// get the UnoUrlResolver service

Object o = ctx.getServiceManager () .createInstanceWithContext (
"com.sun.star.bridge.UnoUrlResolver" , ctx);

XUnoUrlResolver resolver = (XUnoUrlResolver) UnoRuntime.queryInterface (
XUnoUrlResolver.class, o0);

// connect to the remote server and retrieve the appropriate object
o = resolver.resolve (args[0]);

// Check if we got what we expected
// Note: This is not really necessary, you can also use the try and error approach
XServiceInfo serviceInfo = (XServiceInfo) UnoRuntime.queryInterface (XServicelInfo.class,o);
if (serviceInfo == null) {
throw new com.sun.star.uno.RuntimeException (
"error: The object imported with " + args[0] + " did not support XServiceInfo", null);

}

if (!servicelInfo.supportsService ("com.sun.star.io.Pipe")) {
throw new com.sun.star.uno.RuntimeException (
"error: The object imported with "+args[0]+" does not support the pipe service", null);

}

XOutputStream output = (XOutputStream) UnoRuntime.queryInterface (XOutputStream.class,o);
XInputStream input = (XInputStream) UnoRuntime.queryInterface (XInputStream.class, o)

// construct an array.
byte[] array = new byte[]{1,2,3,4,5};

// send it to the remote object
output.writeBytes (array) ;
output.closeOutput () ;

// now read it again in two blocks
byte []1[] read = new byte[1l][0];

System.out.println("Available bytes : " + input.available());

input.readBytes(read,2);

System.out.println("read " + read[O].length + ":" + read[0][0] + "," + read[O0][1]);
System.out.println ("Available bytes : " + input.available());
input.readBytes (read, 3) ;

System.out.println("read " + read[O].length + ":" + read[0][0] +

"ow o4 read[0][1] + "," + read[0]I[2]);

System.out.println("Terminating client");
System.exit (0) ;

}

After bootstrapping the component context, the UnoUrlResolver service is instantiated to access
remote objects. After resolving the remote object, check whether it really supports the pipe service.
For instance, try to connect this client to a running OpenOffice.org this check will fail. A byte
array with five elements is written to the remote server and read again with two readBytes ()
calls. Starting the client with the following command line connects to the server started above. You
should get the following output:

I:\tmp>java UnoExeClient uno:socket,host=localhost,port=2083;urp;test

Available bytes : 5

read 2:1,2

Available bytes : 3

read 3:3,4,5
Terminating client

335

336

Using the uno Executable

The main benefit of using the uno tool as a replacement for writing executables is that the service
manager initialization is separated from the task-solving code and the component can be reused.
For example, to have multiple xMain implementations run in parallel in one process. There is more
involved when writing a component compared to writing an executable. With the bootstrap vari-
able mechanism there is a lot of freedom in bootstrapping the service manager (see chapter 3.4.2
Professional UNO - UNO Language Bindings - C++ Language Binding).

The uno tool is a good starting point when exporting a certain component as a remote server.
However, when using the UNO technology later, the tool does have some disadvantages, such as
multiple objects can not be exported or the component can only be initialized with command line
arguments. If the uno tool becomes insufficient, the listening part in an executable will have to be
re-implemented.

To instantiate Java components in build version 641, you need a complete setup so that the uno executable
can find the java.ini file.

4.11 Accessing Dialogs

This chapter describes how UNO Components can interact with dialogs that have been created
with the Dialog Editor integrated in the OpenOffice.org Basic IDE. Before OpenOffice.org 2.0.4
dialogs designed with this Dialog Editor could only be reasonably used in the context of
OpenOffice.org Basic respectively in the scope of the Scripting Framework (see 19 Scripting Frame-
work). The reason for this restriction was the fact that only scripts managed by the Scripting
Franework could be assigned as action to control events. It was already possible to instantiate
dialogs using the com.sun.star.awt.XbialogProvider API, but there was no other way to
get call backs from the events as to directly add listeners using the corresponding AWT control
interfaces. This is a very inconvenient way to use dialogs created with the Dialog Editor.

From OpenOffice.org 2.0.4 also component methods can be bound to control events. The following
chapters describe both how the binding to component methods is done in Dialog Editor and how
the component has to be designed to use this mechanism.

4.11.1 Assigning Component Methods to Control Events

How a dialog is generally designed in the Basic IDE Dialog editor is described in 12.1
OpenOffice.org Basic and Dialogs - First Steps with OpenOffice.org Basic . The assignment of macros to
control events is also described there in the sub chapter Adding Event Handlers , but the Assign
Action dialog showed in the following illustration can also be used to bind component methods to
control events.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider.html

5 My Macros & Dialogs.5tandard - StarOffice Basic

Fie Edit Wiew Tools Window Help
T orm 3
EEH 8 £5R® 60 REE D |
E|[My Macros & Dialogs], Standard V| S HETPTHOEE Qo F- 5 H .
E|%|Bﬁ@#|_lla@na:iuj:}::::m @ HEE [
A
Properties: CommandButton |z|
|Genera| Events
When inibating.....vvvenvveneen E] .
= Wizard X
‘When receiving Forus.ooon E]
When losing focus... E] o
E] phics Filg:
E] Assign action
3 3 Assign:
Mouse nside. . E] Event Assigned Action
T ————
Mouse moved while key pressed.... I:I E] Back When receiving Facus
Mouse MovEd. .o E] When losing Focus
Mause button pressed. ... E] Key pressed = b
Key released
Mouse button released............... E] ! o
Mouse inside:
MOUSE DUESIGE. 1vvvs v E] Mouse maved while key pressed
Mouse moved
Mouse button pressed
Mouse butkon released
Mouse outside
|
M
140 11 Modulet ' Dialog1 / I3 >
My Macros & Dialogs. Standard. Dialog! | | | | | | |

Hllustration 4.11: Assign Action dialog

Instead of pressing the Macro... button the Component... button has to be used. It opens a Assign
Component dialog.

Assign Component

Component method name
| handleEvent] |

Help

(0]4

Hlustration 4.12: Assign Component dialog

337

338

Besides the standard buttons this dialog only contains an edit field to enter the name of the

Component’s method the event should be bound to. Unlike in the case of assigning macros it’s not
possible to browse to a component’s methods because at design time no component instance exists.

So the name has to be entered by hand.

The next illustration shows how the new assignment is shown in the Assign Action dialog.

Assign action [‘S_<|
Event Assigned Ackion Assign;
When initiating :] handleEvent Macra..,
when receiving focus
When losing Focus Companent. ..

kKey pressed
Remove

key released

Mouse inside

Maouse moved while key pressed
Mouse moved

Mouse button pressed

Mouse button released

Mouse oukside

) [oo

Hllustration 4.13: Assign Action dialog with assigned component method

When designing dialogs that should be used for components, it could make sense to create a new library
first (see 12.2.1 OpenOffice.org Basic and Dialogs - OpenOffice.org Basic IDE - Managing Basic and Dialog Libraries
- Macro Organizer Dialog) and create the dialog there. Reason: The Standard library cannot be exported, but
exporting the library containing the dialog as extension can be very useful in order to deploy it together with

extension which contains the component.

The implementation of methods that should be assigned to events is explained in the following

chapter.

4.11.2 Using Dialogs in Components

In general components using dialogs are like any other component. But they need some additional
code to instantiate and display the dialog(s) to be used and to accept the events created by the

dialog controls.

Instantiate and display a dialog

To do this an extended version of the com.sun.star.awt.DialogProvider service - described in

chapter 19 Scripting Framework - has to be used. The extended service version
com.sun.star.awt.DialogProvider2 supports com.sun.star.awt.XDialogProvider2

providing an additional method com.sun.star.awt.XDialog createDialogWithHandler] (...)

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialog.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogProvider2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/DialogProvider2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/DialogProvider2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/DialogProvider2.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/DialogProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/DialogProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/DialogProvider.html

that allows to pass an interface when creating the dialog. This interface will be used as event
handler and called if events are bound to the component.

The following code is take from the DialogComponent SDK example that can be found in
SDK/examples/DevelopersGuide/Components and shows how a dialog is created and displayed
using the DialogProvider2 service:

// XTestDialogHandler

public String createDialog(String DialogURL, XModel xModel, XFrame xFrame) {
m_xFrame = xFrame;

try {
XMultiComponentFactory xMCF = m_xCmpCtx.getServiceManager () ;
Object obj;

// If valid we must pass the XModel when creating a DialogProvider object

if (xModel != null) {
Object[] args = new Object[1l];
args[0] = xModel;

obj = xMCF.createInstanceWithArgumentsAndContext (
"com.sun.star.awt.DialogProvider2", args, m_xCmpCtx);
}
else {
obj = xMCF.createInstanceWithContext (
"com.sun.star.awt.DialogProvider2", m_xCmpCtx);

}

XDialogProvider2 xDialogProvider = (XDialogProvider2)
UnoRuntime.queryInterface(XDialogProvider2.class, obj);

XDialog xDialog = xDialogProvider.createDialogWithHandler (DialogURL, this);
if (xDialog != null)
xDialog.execute () ;
}
catch (Exception e) {
e.printStackTrace () ;

}
return "Created dialog \"" + DialogURL + "\"";

}

The variable m xCmpCtx is the com. sun.star.uno.XComponentContext interface passed to the
component while initialisation. If the dialog that should be created is placed inside a document a
com.sun.star.frame.XModel interface xModel representing this document has to be passed. It’s
used as argument to initialise the DialogProvider service enabling the access to the document’s
Dialog Libraries. If xModel is null the dialog has to be placed in the application library container.
This also has to be reflected in the DialogURL passed to the method.

Example code for a Basic/Dialog library Libraryl placed in a document:

Sub TestDialogComponent ()
oComp = CreateUnoService("com.sun.star.test.TestDialogHandler")
oComp.createDialog("vnd.sun.star.script:Libraryl.Dialogl?location=document",
ThisComponent, StarDesktop.getActiveFrame ())
End Sub

Example code for a Basic/Dialog library Libraryl placed in My Macros :

Sub TestDialogComponent ()
oComp = CreateUnoService("com.sun.star.test.TestDialogHandler")
oComp.createDialog("vnd.sun.star.script:Libraryl.Dialogl?location=application”, _
null, StarDesktop.getActiveFrame ())
End Sub

The dialog contained in the DialogComponent.odt sample document in SDK/examples/Develop-
ersGuide/Components/DialogComponent looks like this.

339

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XModel.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html
http://api.openoffice.org/docs/common/ref/com/sun/star/uno/XComponentContext.html

340

UNO Event Binding Sample

2

Call handleEwent

all handleEventWitharguments

IJsing ®DialogEventHandler

Zall daik1

Call doitz Call dait3

Hllustration 4.14: Sample dialog

The button labels show which component method is called in each case. The next chapter explains
how these methods can be implemented inside the component. Method doit3 isn’t implemented
at all. It’s called in the sample dialog to show the resulting error message:

StarOffice 8 x|

An appropriate component method "doit3"
could not be Found,

Check spelling of method name.

Hlustration 4.15: Error message for not existing
method

Accept events created by dialog controls

The event handling functionality can be implemented in two different ways. The test component

described here uses both ways.

The first way is to implement a the generic handler interface com.sun.star.awt.XDialogEven-

tHandler containing two methods:

interface XDialogEventHandler: com::sun::star::uno::XInterface
{
bool callHandlerMethod
(
[in] com::sun::star::awt::XDialog xDialog,
[in] any Event,
[in] string MethodName
)

sequence<string> getSupportedMethodNames () ;

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html

If an event occurs that is bound to a component method and the component implements this inter-
face the method callHandlerMethod will be called first with the method name used in the event
binding passed as MethodName parameter. In this example this would be:

xHandler.callHandlerMethod(xDialog, aEvent, “handleEvent”);

xDialog points to the same dialog instance that has been returned by the createbDialogiithHan-
dler () method. Event represents the event object originally passed to the awt listener method. E.g.
in case of the When initiating event used in this example the corresponding awt listener interface
is com.sun.star.awt.XActionListener and an com.sun.star.awt.ActionEvent is passed to its
actionPerformed method when the event occurs. This ActionEvent object will also be passed to
callHandlerMethod. The Event object has to be passed as any, because other events use different
listener interfaces with other event object types. callHandlerMethod returns a bool value.
Returning true means that the event has been handled.

The method getsupportedMethodNames () should return the names of all methods handled by
callHandlerMethod (). It’s intended for later use, especially to expand the user interface to allow
browsing a component’s methods.

If the event has not been handled, because callHandlerMethod returns false or
com.sun.star.awt.XDialogEventHandler isn't supported at all by the component, the Dialog-
Provider uses the com.sun.star.beans.Introspection service to detect if one of the following
methods is provided by one of the interfaces supported by the component:

void [MethodName]

(
[in] com::sun::star::awt::XDialog xDialog,
[in] any aEvent

)i

or

void [MethodName] (void);

The second method is only used if the first one is not available. In this example the component
would have to support an interface containing a method handleEvent with one of these signa-

tures. It also has to support com.sun.star.lang.XTypeProvider because otherwise the introspec-
tion mechanism does not work.

As already mentioned the sample component supports both ways to implement handler methods.
com.sun.star.awt.XDialogEventHandler is implemented like this:

private String aHandlerMethodl = "doitl";
private String aHandlerMethod2 = "doit2";

//XDialogEventHandler
public boolean callHandlerMethod(/*IN*/XDialog xDialog, /*IN*/Object EventObject,
/*IN*/String MethodName) {
if (MethodName.equals(aHandlerMethodl)) {
showMessageBox ("DialogComponent", "callHandlerMethod() handled \"" + aHandlerMethodl + "\"");
return true;
}
else if (MethodName.equals(aHandlerMethod2)) {
showMessageBox ("DialogComponent", "callHandlerMethod() handled \"" + aHandlerMethod2 + "\"");
return true;
}
return false;

}

public String[] getSupportedMethodNames () {
String[] retValue= new String[l];
retValue[0]= aHandlerMethodl;
retValue[l]= aHandlerMethod?2;
return retValue;
}
The implementation is very simple to show only the logic. For the two handled method names the

method displays a MessageBox and return true. Otherwise false is returned.

The other methods bound to the sample dialog control events are implemented using the other
way. The interface com.sun.star.test.XTestDialogHandler looks like this:

341

http://api.openoffice.org/docs/common/ref/com/sun/star/test/XTestDialogHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/test/XTestDialogHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/test/XTestDialogHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/lang/XTypeProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Introspection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Introspection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/beans/Introspection.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XDialogEventHandler.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/ActionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/ActionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/ActionEvent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XActionListener.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/XActionListener.html

342

module com { module sun { module star { module test {

interface XTestDialogHandler {

string createDialog([in] string DialogURL, [in] ::com::sun::star::frame::XModel xModel,
[in] ::com::sun::star::frame::XFrame xFrame) ;

void copyText ([in] ::com::sun::star::awt::XDialog xDialog, [in] any aEventObject);

void handleEvent () ;

void handleEventWithArguments([in] ::com::sun::star::awt::XDialog xDialog,

[in] any aEventObject);
}i
Yiods o} ds

Besides the already described createDialog method three methods are defined to handle events.

handleEvent and handleEventWithArguments are implemented very simple and only display a

message box:

public void handleEvent () {

showMessageBox ("DialogComponent"”, "handleEvent () called");
}

public void handleEventWithArguments (XDialog xDialog, Object aEventObject) {
showMessageBox ("DialogComponent", "handleEventWithArguments () called\n\n" +
"Event Object = " + aEventObject);
}

The method copy text shows, how the passed XDialog interface can be used to access controls on

the dialog itself. The details are not described here. For more information see 12.6 OpenOffice.org
Basic and Dialogs - Creating Dialogs at Runtime.

public void copyText(XDialog xDialog, Object aEventObject) {
XControlContainer xControlContainer = (XControlContainer)UnoRuntime.queryInterface (
XControlContainer.class, xDialog);

String aTextPropertyStr = "Text";

String aText = "";

XControl xTextFieldlControl = xControlContainer.getControl("TextFieldl");
XControlModel xControlModell = xTextFieldlControl.getModel () ;

XPropertySet xPropertySetl = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xControlModell);

try {
aText = (String)xPropertySetl.getPropertyValue (aTextPropertyStr);

}
catch (Exception e) {
e.printStackTrace () ;

}

XControl xTextField2Control = xControlContainer.getControl("TextField2");
XControlModel xControlModel2 = xTextField2Control.getModel () ;

XPropertySet xPropertySet2 = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xControlModel2);
try {

xXPropertySet2.setPropertyValue (aTextPropertyStr, aText);
}
catch (Exception e) {

e.printStackTrace () ;

}

showMessageBox ("DialogComponent", "copyText() called");
}
Simple components using dialogs can be realised very easily by supporting XDialogEventHandler
as then no own interfaces have to be created. For complex components it could make more sense to
define handler interfaces to avoid a huge switch/case blocks in XDialogEventHandler:: callHan-
dlerMethod.

OpenOffice.org 2.3 Developer's Guide « June 2007

Extensions

An extension is a file intended for the distribution of code and / or data which is to be used by
OOo. The file has the file extension oxt (formerly .uno.pkg and .zip), and it acts as a container for
various items, such as libraries, JARs, configuration data, type libraries, Basic libraries, Basic
dialogs, etc. Before OOo can use any content of the extension, it needs to be installed by the Exten-
sion Manager.

5.1 Extension Manager

The Extension Manager is a tool for managing extensions and other deployable items, such as
separate libraries, JARs, configuration data files. This includes adding, removing, enabling and
disabling of these items.

The Extension Manager can be started from within the office by pressing the menu item Tools |
Extension Manager or by running the unopkg executable, which is contained in the program direc-
tory of the office installation.

When an extension is installed, then a copy is created which is kept either in the user installation or
the shared installation (<office-directory>/share). The original extension can therefore be (re)
moved after installation.

5.1.1 Deployment Items

The Extension Manager can be used to deploy various types of files. It is primarily used for exten-
sions. The latest incarnation of an extensions is the .oxt file, which has superseded .uno.pkg and

Zip .

Apart from extensions the Extension Manager can also manage these types:
Configuration data (.xcu, .xcs)
UNO Libraries (.dll /.s0).
JARs (jar)
Type libraries (.rdb)

5.1.2 Installing Extensions for All or a Single User

When installing an extension one has to decide if all possible users can use it or only oneself. In the
first case, users cannot enable, disable or remove the extension. This can only be done by the

343

administrator. That also means, that in case the extension changes the appearance (toolbars, menu
bar, etc.), all users are affected. They may, however, configure their office so that particular menu
or toolbar items are not shown. There is currently no way to centrally install an extension for
particular user groups.

If an extension is to be installed for all users or only for the single user is determined during instal-
lation. The person, who is going to install the extension, must select in the Extension Manager
dialog either My Extensions or OpenOffice.org Extensions before pressing the Add... button.
In the first case, the extension will only be installed for the current user, whereas in the latter case it
will be installed for all users.

When running unopkg in a windowless mode then the option --shared determines if an exten-
sion can be used by all users. For example:

[<OfficePath>/program] $ unopkg add --shared my extension.oxt
would install my_extensions, so that it can be used by all users.

Extensions which are installed for all users are also called shared extensions, and those installed
only for the user (who installed it) are called user extensions.

5.1.3 Extension Manager in OpenOffice.org

Within a running office the Extension Manager is started through the menu item Tools | Exten-
sion Manager When started in this way, extensions can only be installed as user extensions.
All items deployed under OpenOffice.org Extensions cannot be modified. But it is possible to
export them.

5.1.4 unopkg

The unopkg executable offers another way to start the Extension Manager. It supersedes the
pkgchk executable which was used in OpenOffice.org 1.1.0 and older versions and which no
longer works.

In contrast to the Extension Manager in OpenOffice.org unopkg can also manage shared exten-
sions. For example:

[<OfficePath>/program] $ unopkg add --shared my extension.oxt
installs my_extension.oxt for all users.

unopkg offers a windowless mode in which all interactions occurs through the console. This is the
default. If unopkg is started with the subcommand gui then the Extension Manager dialog
appears which is exactly the same as the one in OpenOffice.org.

[<OfficePath>/program] $ unopkg gui

The difference is that in the dialog all items deployed under OpenOffice.org Extensions can be
modified and new items can be added there as well. All actions, that is, adding, removing, etc. can
be done in the dialog. Therefore unopkg gui does not require any more parameters.

It follows a short overview what can be done with unopkg. Since there are many more commands,
have a look at the help text that can be obtained by calling unopkg -h”.

First of all open a console and change into the program directory of the office installation.

Adding an extension for a single user:

[<OfficePath>/program] $ unopkg add my extension.oxt

344 OpenOffice.org 2.3 Developer's Guide « June 2007

Adding an extension for all users:

[<OfficePath>/program] $ unopkg add --shared my extension.oxt

Removing a user extension is done via the identifier of the extension (see 5.3 Extensions - Extension
Identifiers):

[<OfficePath>/program] $ unopkg remove my.domain.my extension-id

Remove a shared extension:

[<OfficePath>/program] $ unopkg remove --shared my.domain.my extension-id

Before you install an extension or other item for all users, make absolutely sure there are no running
instances of OpenOffice.org. unopkg cannot recognize if there are running instances of
OpenOffice.org from different users. Installing into a running office installation might cause incon-
sistencies and destroy your installation!

When a user starts OpenOffice.org and then starts unopkg, then the Extension Manager from the
office is used and unopkg terminates. Then, however, no shared extensions and other shared items
can be modified.

Although it is now possible to deploy live into a running OpenOffice.org process, there are
some limitations you should be aware of: Removing a type library from a running process is not
possible, because this may lead to crashes when the type is needed. Thus if you, for example,
uninstall a package that comes with a UNO type library, these types will vanish upon next process
startup, but not before.

There may also be problems with cached configuration data, because parts of the running process
do not listen for configuration updates (for example, menu bars). Most often, those parts read the
configuration just once upon startup.

5.1.5 Location of installed Extensions

Sometimes an extension developer needs to know the path to the root of his installed extension e.g.
to load some additional data. You can use the singleton PackagelnformationProvider to get an
URL for an installed extension with a given Extension Identifier. For more information about
Extension Identifiers see 5.3 Extensions - Extension Identifiers. For more information see
com.sun.star.deployement.PackageInformationProvider and have a look at

com.sun.star.deployment.XPackageInformationProvider

namespace Css = com: :sun: :star;
css::uno: :Reference< css::uno: :XComponentContext > mxContext;

css::uno: :Reference< css::deployment::XPackageInformationProvider >
xInfoProvider (css::deployment::PackageInformationProvider::get (mxContext));

// "MY PACKAGE ID" is the identifier of the package where we want to get location from

rtl::0UString sLocation = xInfoProvider->getPackageLocation (
rtl::0UString::createFromAscii("MY PACKAGE_ ID"));

5.2 File Format

An extension is a zip file having a name that ends on .oxt (formerly .uno.pkg or .zip).

The file extension .oxt is associated with the MIME / media type vnd.openofficeorg.extension. An
extension can contain UNO components, type libraries, configuration files, dialog or basic libraries,
etc.

345

http://api.openoffice.org/docs/common/ref/com/sun/star/deployment/XPackageInformationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/deployment/XPackageInformationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/deployment/XPackageInformationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/deployement/PackageInformationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/deployement/PackageInformationProvider.html
http://api.openoffice.org/docs/common/ref/com/sun/star/deployement/PackageInformationProvider.html

346

An extension should also contain a description.xml (see 5.5 Extensions - description.xml) and must
contain a directory META-INF (all uppercase). The META-INF directory contains a manifest.xml
which lists all items and their media-type.

For backward compatibility, legacy bundles (extension uno.pkg, .zip) that have been formerly deployed
using pkgchk are deployable, too. Migrate legacy bundles to the current . oxt format. This can easily be done
using the GUI, exporting a legacy bundle as .an . oxt file. When a legacy bundle is exported, a
manifest.xml file is generated, enumerating the detected items of the bundle.

Depending on the media-type the respective file needs to be treated particularly. For example a
UNO component needs to be registered before it can be used. All media types which does not
require a particular handling of the file are ignored currently (and actually need not be contained
in the manifest.xml).

It follows a description of possible extension items and their media-types:

Shared Library UNO Components
The media-type for a shared library UNO component is application/vnd.sun.star.uno-compo-
nent;type=native , for example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.uno-component;type=native"
manifest:full-path="myComponent.uno.so"/>

Shared Library UNO Components for particular Platforms
When you implement a UNO native component, for example, a .d11 or . so file, then this file is
only deployable on that specific platform. It is often convenient to package a bundle for
different platforms. For instance, you compile your component for x86 Linux, Solaris SPARC
and Windows. You have to tell the Extension Manager which version of your component file
corresponds to which platform via a platform attribute supplied with the media-type, for
example,
<manifest:file-entry manifest:media-type=
"application/vnd.sun.star.uno-component;type=native;platform=Windows"
manifest:full-path="windows/mycomp.uno.dll"/>
<manifest:file-entry manifest:media-type=
"application/vnd.sun.star.uno-component;type=native;platform=Linux x86"
manifest:full-path="1linux/myComp.uno.so"/>
<manifest:file-entry manifest:media-type=

"application/vnd.sun.star.uno-component;type=native;platform=Solaris SPARC"
manifest:full-path="solsparc/myComp.uno.so"/>

RDB Type Library
The media-type for a UNO RDB type library is application/vnd.sun.star.uno-
typelibrary;type=RDB , for example,
<manifest:file-entry manifest:media-type="application/vnd.sun.star.uno-typelibrary;type=RDB"
manifest:full-path="myTypes.uno.rdb"/>
Jar Type Library
The media-type for a UNO Jar typelibrary is application/vnd.sun.star.uno-
typelibrary;type=Java , for example,
<manifest:file-entry manifest:media-type="application/vnd.sun.star.uno-typelibrary;type=Java"
manifest:full-path="myTypes.uno.jar"/>

Keep in mind that the RDB variant of that type library must be deployed also. This is currently
necessary, because your Java UNO types may be referenced from native UNO code.

Uno Jar Components
The media-type for a UNO Jar component is application/vnd.sun.star.uno-
component;type=Java , for example,

OpenOffice.org 2.3 Developer's Guide « June 2007

<manifest:file-entry manifest:media-type="application/vnd.sun.star.uno-component;type=Java"
manifest:full-path="myComponent.uno.jar"/>

UNO Python Components
unopkg now supports registration of Python components (.py files). Those files are registered
using the com.sun.star.loader.Python loader. For details concerning Python-UNO, please
refer to http://udk.openoffice.org/python/python-bridge.html.
The media-type for a UNO Python component is application/vnd.sun.star.uno-
component;type=Python , for example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.uno-component;type=Python"
manifest:full-path="myComponent.uno.py"/>

OpenOffice.org Basic Libraries
OpenOffice.org Basic libraries are linked to the basic library container files. Refer to 12
OpenOffice.org Basic and Dialogs for additional information.
The media-type for a OpenOffice.org Basic Library is application/vnd.sun.star.basic-library ,
for example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.basic-library"
manifest:full-path="myBasicLib/"/>

Dialog Libraries
Dialog libraries are linked to the basic dialog library container files. Refer to 12 OpenOffice.org
Basic and Dialogs for additional information.
The media-type for a dialog library is application/vnd.sun.star.dialog-library , for example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.dialog-library"
manifest:full-path="myDialog/"/>

Configuration Data Files
The media-type for a configuration data file is application/vnd.sun.star.configuration-data ,
for example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.configuration-data"
manifest:full-path="myData.xcu"/>

Configuration Schema Files
The media-type for a configuration schema file is application/vnd.sun.star.configuration-
schema , for example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.configuration-schema"
manifest:full-path="mySchema.xcs"/>

Be careful not to install schemata (.xcs files) which contain the same elements (cor:package,
oor:name) but have different definitions.

Extension Tooltip Description
If you want to add a tooltip description (which shows up in the balloon help of a bundle node
in the Extension Manager dialog), then you can do so by specifying localized UTF-8 files, for
example,

<manifest:file-entry manifest:media-type="application/vnd.sun.star.package-bundle-description;locale=en"
manifest:full-path="readme.en" />

<manifest:file-entry manifest:media-type="application/vnd.sun.star.package-bundle-description;locale=de"
manifest:full-path="readme.de" />

manifest:media-type="application/vnd.sun.star.package-bundle-description"
manifest:full-path="readme.txt" />

The best matching locale (against the current installation’s locale) is taken. The locale is of the
form "locale=language-country-variant".

All other contents of the extension are simply copied into the Extension Manager cache. You can,
for instance, deploy an image for add-on menus within a package, or any other file needed by your

347

http://udk.openoffice.org/python/python-bridge.html
http://udk.openoffice.org/python/python-bridge.html
http://udk.openoffice.org/python/python-bridge.html

348

component. The OpenOffice.org configuration is used to find out in which path this file is located
in a particular installation.

When you define a package containing additional files, include an .xcu configuration data file,
which points to your files. Use a variable $origin% as a placeholder for the exact path where the
file will be copied by the Extension Manager. When unopkg installs the data, it replaces the path
with anURL containg a macro an writes into the configuration. This URL has to be expanded
before it is a valid file URL. This can be done using the com.sun.star.util. MacroExpander service.
The %origin% variable is, for instance, used by the ImageIdentifier property of add-on menus
and toolbar items, which is described in the 4.7.3 Writing UNO Components - Integrating Components
into OpenOffice.org - User Interface Add-Ons - Configuration section.

5.3 Extension Identifiers

Extensions now have unique identifiers. This removes the previous restriction that no two exten-
sions with identical file names can be deployed.

Technically, an extension identifier is a finite sequence of Unicode scalar values. Identifier identity
is element-by-element identity of the sequences (no case folding, no normalization, etc.). It is
assumed that extension writers cooperate to keep extension identifiers unique. By convention, use
lowercase reversed-domain-name syntax (e.g., org.openoffice.) prefixes to generate unique
(but still humanly comprehensible) identifiers. When you write an extension, use the reversed
domain name of a site you controll (and nof org.openoffice.) as prefix. Identifiers starting
with the prefix org.openoffice.legacy. are reserved for legacy extensions (see next).

The extension identifier is obtained from the description.xml contained in the extension. If the
extension does not specify such an explicit identifier, then an implict identifier is generated by
prepending org.openoffice.legacy. to the (obvious sequence of Unicode scalar values repre-
senting the) file name of the extension. (Uniqueness of identifiers is then guaranteed by the
assumption underlying legacy extension management that no two legacy extensions have the same
file name.)

5.4 Extension Versions

Extensions are often improved over time. That is, publishers want to ship new versions of the same
extension with added functionality and/or bug fixes. Adding extension versions allows publishers
to ship new versions, and allows [PRODCUTNAME] to detect and handle the case that an exten-
sion installed by the user is an update of an existing extension.

Technically, an extension version v is defined as an infinite sequence of non-negative integers v =

vy, U1, ... Where all but a finite number of elements have the value zero. A total order is defined on
versions via lexicographical comparison. A textual representation of a version v = vy, vy, ... isa
finite string built from the BNF

version ::
element ::

[element (“.” element) *]
(YO | N1 | N2 | N3Z | N4M | NBM | NGr | N7# | Ngro | Ngry 4

of n? 0 elements where each element is a decimal representation of v; for 0 ? i <, and each v;=0
fori? n.

The extension version is obtained from the description.xml contained in the extension. If the exten-
sion does not specify such an explicit version, then an implict textual version representation of the
empty string (representing a version of all zeroes) is assumed.

OpenOffice.org 2.3 Developer's Guide « June 2007

http://api.openoffice.org/docs/common/ref/com/sun/star/util/MacroExpander.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/MacroExpander.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/MacroExpander.html

No general semantics are prescribed to versions, other than the total order which determines
whether one version is less than, equal to, or greater than another version, respectively. However,
extension publishers are encouraged to use the widely accepted three-level scheme of major
(incompatible changes), minor (compatible changes), micro (bug fixes) where applicable.

5.5 description.xml

The description.xml is a means to provide additional useful information, such as dependencies,
license and update information. It will be extended to support new features in the future. The file
must be located in the root of the extension and the name is case sensitive.

The description.xml is searched case sensitive in an oxt package. This is important to know when
you package your extensions content into a new oxt package.

5.5.1 Description of XML Elements

Element <description>
XPath: /description

Parent element: document root
Child elements:

<registration> (page 350)
<dependencies> (page 351)
<update-information> (page 351)

<description> is the root element of the description.xml.

Table 1 Attributes of <description>

349

Attribute

Description

xmlns The default namespace of element description and all children must be defined as
"http://openoffice.org /extensions/description /2006"
xmlns:dep The namespace for dependency information must also be defined as

xmlins:xlink

other
namespace defi-
nitions

"http: / /openoffice.org /extensions/description /2006"

The xlink namespace must be defined as

"http:/ /www.w3.org/1999/xlink"

Other namespaces can be added as necessary

Element <identifier>
XPath: /description/identifer

Parent: <description> (page 349)

Child elements: none

Table 2 Attributes of <identifier>

Attribute

value

Description

Required. The extension identifier.

Element <version>

XPath: /description/version

Parent: <description> (page 349)

Child elements: none

Table 3 Attributes of <version>

Attribute

value

Description

Required. A textual representation of the extension version.

Element <registration>

XPath: /description/registration

Parent: <description> (page 349)

Child elements:

<simple-license> (page 351)

OpenOffice.org 2.3 Developer's Guide « June 2007

http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006

The registration element currently only contains the <simple-license> element. If the
<registration> element exists, then it must have a child element. For more information about using
licenses see chapter 5.6.

Element <dependencies>

XPath: /description/dependencies

Parent: <description> (page 349)

Child elements:
<OpenOffice.org-minimal-version> (page 352)

others

Element <update-information>
XPath: /description/update-information
Parent: <description> (page 349)

Child elements:

<src> (page 352)

<update-information> must have one or more <src> children. The second, third, etc. element are
regarded as fallback, that is, the elements provide URLs to mirrors. The Extension Manager will
try to get update information by using a URL and only use a different URL if an error occurred. That
is, if for example the first URL references an atom feed that does not contain any references at all,
but is a valid feed, then the Extension Manager assumes that there are no update information
available. Then URLs from other <src> elements are not examined. Therefore the update information
referenced by every URL must be identical. For more information about online updates of exten-
sions see chapter 5.9.

Element <simple-license>

XPath: /description/registration/simple-license
Parent: <registration> (page 350)

Child elements:

<license-text> (page 353)

The element contains the <license-text> elements, determines if all user must agree to the license,
or just the person who installs it, and determines a default <license-text> element .

If the <simple-1license> element exists, then it must have at least one child element.

351

352

Table 4 Attributes of <simple-license>

Attribute Description

accept-by Required.Value is either user or admin . user means thatevery user has to
agree to the license. That is, the extension can only be installed as user extension but
not as shared extension. If it has the value admin then it can be deployed as shared
extension as well. In that case only the person who installs it has to agree to the
license. Individual users will not be asked to accept the license. They can use the
extension right away. In case the value is user and the extension is being
installed as user extension then the user must always agree to the license.

default-license-id Required. Determines what <1icense-text>is used if no <license-text>
element has a 1ang attribute whoose value matches the locals of OOo. There must
always be exactly one <license-text> element whith a 1icense-id attribute
whoose value matches that of the default-license-id. The type is xsd:IDREF

suppress-on-update Optional. When the attribute is not provided then the value false isassumed.
The value true indicates that the license for this extension will not be displayed
during installation when the same extension (same id but probably different
version) is already installed. This applies for the automatic update as well as for
manually installing an extension. The version of the already installed extension
does not matter. Suppressing the license can be useful during the online update,
because otherwise the update operation could be interrupted by many license
dialogs.

Element <OpenOffice.org-minimal-version>
XPath: /description/dependencies/OpenOffice.org-minimal-version
Parent: <dependencies> (page 351)

Child elements: none

Table 5 Attributes of <OpenOffice.org-minimal-version>

Attribute Description

xmlns:dep The namespace for dependency information (inherited from
<description>, see page 349) must be defined as

"http:/ /openoffice.org /extensions/description /2006"

dep:name Required. The string OpenOffice.org wvalue (where valueis the
value of the attribute value).

dep:OpenOffice.org-minimal-version Optional. This attribute should never be used with this element.

value Required. The required underlying OpenOffice.org version (2.1 ,
2.2 ,etc), starting with OpenOffice.org 2.1.

Element <src>
XPath: /description/update-information/src
Parent: <update-information> (page 351)

Child elements: none

OpenOffice.org 2.3 Developer's Guide « June 2007

http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006
http://openoffice.org/extensions/description/2006

Table 6 Attributes of <src>

Attribute Description

xlink:href Required. The value is a URL which provides the update information directly or an atom

feed which in turn references the update information. The URL can point directly to a file
or it may invoke code, such as a servlet, cgi, etc, that returns the atom feed or the update
information.

Element <license-text>

XPath: /description/registration/simple-license/license-text

Parent: <simple-license> (page 351)

Child elements: none

The element contains information about where to find the file containing the license text, which
language it uses, and if this element is the default <license-text>

Table 7 Attributes of <license-text>

Attribute Description

xlink:href Required. The value is a relative URL to the file which contains the license text. The base

URL is the URL of the root directory of the extension. That is, if the extension has been
unzipped, then the resulting directory is the root directory.

lang Required. A language identifier according to RFC 3066. Values can be for example: en,

en-US, en-US-variant, etc. Currently OOo does not make use of variants.

license-id Optional. However one license-text element must have this attribute and the value must

match the value of the default-1license-id attribute of the <simple-license>
element. The type is xsd:ID.

5.5.2 Example

<?xml version="1.0" encoding="UTF-8"7?>
<description xmlns="http://openoffice.org/extensions/description/2006"
xmlns:d="http://openoffice.org/extensions/description/2006"

xmlns:xlink="http://www.w3.0rg/1999/xlink">
<version value="1.0" />

<dependencies>
<OpenOffice.org-minimal-version value="2.2" d:name="OpenOffice.org 2.2"/>
</dependencies>

<update-information>
<src xlink:href="http://extensions.openoffice.org/testarea/desktop/license/update/lic3.update.xml"

/>
</update-information>
<registration>
<simple-license accept-by="admin" default-license-id="en-NZ" suppress-on-update="true" >
<license-text xlink:href="registration/license de-DE.txt" lang="de-DE" />
<license-text xlink:href="registration/license en-GB.txt" lang="en-GB" />
<license-text xlink:href="registration/license en-NZ.txt" lang="en-NzZ" license-id="en-Nz" />
<license-text xlink:href="registration/license en-US.txt" lang="en-US" />
</simple-license>
</registration>
</description>

353

This description.xml contains these information:
The version is 1.0.
It only works with OpenOffice.org 2.2 and better.
It supports the update feature and update information can be obtained at the specified address.

When this extension is installed as shared extension then a license text is being displayed.
Different localizations of the license text are available.

5.6 Simple License

This feature is about displaying a license text to the user during installation. The user can agree or
decline the license, where in the latter case the installation will be aborted. It is called Simple
License because there is no tamper resistant mechanism that prevents the installation in case the
user does not agree to the license. It also does not do anything more than just displaying a license
text. However it provides a way to use localized licenses. More on that later.

The license text is displayed either in a dialog or in the console dependent on the way the package
manager was started. When it was started by the tools->Package Manager menu item or by
invoking unopkg gui in the console then a dialog is used. By using unopkg add the license text will
be displayed in the console and user input has to be done through the same.

The license dialog or the license text in the console is displayed when the extension is being
installed. Currently there are two modes to install extensions, user mode and shared mode. An exten-
sion that was installed in user mode (let’s call it a user extension) can only be used by just that person
who installed it. If the extension was installed in shared mode (let’s call it a shared extension), then it
can be used by all users. Since the license text is only displayed during installation, all users who
are using a shared extension will not see any license text (except the user who installed this shared
extension). However, the publisher of the extension may think it necessary that everyone who
wants to use it has to agree to the license first. For this purpose, he can mark the extension accord-
ingly. This extension can then only be installed in user mode and not in shared mode. Likewise the
extension can be marked indicating that only the person who installs it needs to agree to the
license. Such an extension can be installed in both modes. But when installing in user mode then
every user has to agree to the license nonetheless.

Here is an example of the description.xml:

<?xml version="1.0" encoding="UTF-8"?>
<description xmIns="http://openoffice.org/extensions/description/2006"
xmlins:xlink="http://www.w3.0rg/1999/xlink">
<registration>
<simple-license accept-by="user" default-license-id="de">
<license-text xlink:href="registration/license_de.txt" lang="de" license-id="de" />
<license-text xlink:href="registration/license_en_US.ixt" lang="en-US" />
</simple-license>
</registration>
</description>

In this example, the license would have to be agreed to by all users (that means no shared mode
installation). This is indicated by the value user of the attribute accept-by in the <simple-
license> element. The attribute could also have the value admin , which would indicate that the
license needs only be agreed to by the person who installs it.

354 OpenOffice.org 2.3 Developer's Guide « June 2007

The <license-text> elements contain information about the files which contain the text that is
displayed. The content of these files must be UTF-8 encoded. It is displayed exactly as it is in the
file. That is, no formatting occurs. There can be one to many <license-text> elements, where
each element provides information about a different language of the license text. The attribute
xlink:href contains a relative URL (relative to the root directory of the extension) which points to
a file which countains the license text in exacty one language. Which language is indicated by lang
attribute.

If the package manager does not find a <license-text> element which matches the locale of OO0
then it will pick the <1icense-text> that is marked as the default language. This mark is
expressed by the 1icense-id attribute of <license-text>and the default-license-id attribute
of the <simple-license> element. There must always be exactly one <1icense-text> whose
attribute value is the same as that from <simple-license>. This <license-text> element is then
used as the default.

5.6.1 Determining the Locale of the License

The locale used by OOo and the license text files is expressed by a language string according to
REC 3066. This string contains the language and can optionally contain a country and further infor-
mation. Let’s assume that the office uses britisch english (en-GB) end the extension has two license
text files, one in german (de), which is also the default, and the other in english from New Zealand
(en-NZ). Obviously there is no perfekt match, since en-GB is not en-NZ. But we would not want to
use the default yet, because en-NZ is most probably closer to en-GB as german. Therefore we use
an algorithm that tries to find a close match of the local before it resorts to the default. Here is
the algorithm:

In order to find the appropriate <1icense-text> element, the values of 1ang attribute are
compared with the office’s Locale. Both are represented as strings according to RFC3066. The
comparison is done case sensitive.

Input to the algorithm:

e All license-text elements.

e The locale of the office
Output of the algoritm:

e Alicense-text element
Algorithm:

1. The language, country and variant part of the office’s locale are used to find a matching
license-text. If there is an exact match then the respective 1icense-text is selected
as output and we are done. Only the first match is used.

2. The language and country part of the office’s locale are used to find a matching
license-text. If there is an exact match then the respective 1icense-text is selected
as output and we are done.

3. The language and country part of the office’s locale are used to find a matching
license-text. This time, we try to match only the language and country parts. For
example, the office locale strings en-US , en-US-east match the lang attribute with the
values en-US-north , en-US-south ,etc. The first license-text with a matching lang
attribute is selected as output. If there is a match then we are done.

355

356

4. Only the language part of the office’s locale is used to find a matching 1icense-text. If
there is an exact match then the respective 1icense-text is selected as output and we
are done. Only the first match is used.

5. Only the language part of the office’s locale is used to find a matching 1icense-text.
This time, we try to match only the language part. For example, the office locale strings
en , en-US, en-US-east match the lang attribute with the values en-GB , en-GB-
north , etc. The first 1icense-text with a matching lang attributed is selected as
output. If there is a match then we are done.

6. The license-text element which is marked as default will be selected. That is, the
value of the attribute 1icense-id must match the default-license-id of the
simple-license element.

The following example show what values would match.

Example 1: Locale of OOo is en-US and the relevant part of the description.xml is:

<simple-license accept-by="user" default-license-id="en-US" >
<license-text xlink:href="lic en-GB" lang="en-GB" />
<license-text xlink:href="lic en-US" lang="en-US" license-id="en-US" />
</simple-license>

The <license-text> with lang= en-US will be selected.

Example 2: Locale of OOo is en-US and the relevant part of the description.xml is:

<simple-license accept-by="user" default-license-id="en-NzZ" >
<license-text xlink:href="lic en-GB" lang="en-GB" />
<license-text xlink:href="lic en-Nz" lang="en-Nz" license-id="en-Nz" />
</simple-license>

The <license-text> with lang= en-GB will be selected.

Example 3: Locale of OOo is en-US and the relevant part of the description.xml is:

<simple-license accept-by="user" default-license-id="en-NZ" >
<license-text xlink:href="lic_en" lang="en" />
<license-text xlink:href="lic en-GB" lang="en-GB" />
<license-text xlink:href="lic en-Nz" lang="en-Nz" license-id="en-Nz" />
</simple-license>

The <license-text> with lang= en will be selected.

Example 4: Locale of OOo is de-DE and the relevant part of the description.xml is:

<simple-license accept-by="user" default-license-id="en-NzZ" >
<license-text xlink:href="1lic en" lang="en" />
<license-text xlink:href="lic:en—GB" lang="en-GB" />
<license-text xlink:href="1lic en-NzZ" lang="en-NzZ" license-id="en-NZ" />
</simple-license> -

The <license-text> with lang= en-NZ will be selected.

5.7 Dependencies

One can imagine a large variety of dependencies an extension can have on its environment: avail-
ability of certain UNO types and services, availability of features only present since some specific
version of OOo, availability of other installed extensions, availability of third-party libraries, etc.

To support this, a mechanism is introduced so that extensions can bring along a specification of
their dependencies. When a user wants to install an extension, the application first checks whether
all dependencies are met. If not, an error dialog is displayed informing the user that the extension
could not be installed.

The only actual dependency currently defined is <OpenOffice.org-minimal-version value= X >,
where X is the required underlying OpenOffice.org version (2.1 , 2.2 , etc.), starting with

OpenOffice.org 2.3 Developer's Guide « June 2007

OpenOffice.org 2.1. (Even if an extension is installed in a derived product like StarOffice, this
dependency is on the underlying OpenOffice.org version.)

000 2.0.3 and earlier are not prepared to correctly handle extensions with dependencies. In

000 2.0.3 and earlier, if a . uno.pkg (or . zip) extension specifies any dependencies, they are
effectively ignored and the extension is installed nonetheless. An . oxt extension cannot be
installed at all in OO0 2.0.3 and earlier. So, if an extension shall run in any OOo version, it should
be named . uno. pkg and should not specify any dependencies; if an extension shall only run in
000 2.0.4 and later, it should be named . oxt and should not specify any dependencies; and if an
extension shall only run in a future OOo version, it should be named . oxt and should specify the
appropriate dependencies (which will be defined by the time the given OOo version is available).

There is a certain dilemma: On the one hand, nothing is yet known about the kinds of dependen-
cies that will be defined in the future. On the other hand, at least some information about the
unsatisfied dependencies of a future extension must be displayed in OOo 2.0.4. Therefore, each
dependency specified by an extension must contain a human-readable (non-localized, English)
name that can be displayed to the user, conveying at least rudimentary information about the
nature of the unsatisfied dependency. Future versions of OOo that already know a certain kind of
dependency are expected to display more detailed information.

Likewise, when new dependencies are defined over time, old versions of OOo will not know about
them. Those old OOo will thus reject extensions making use of those dependencies, even if the old
OOo version would actually satisfy the dependencies. Therefore, each dependency specified by an
extension may optionally contain an OpenOffice.org-minimal-version attribute that speci-
fies the minimal version of OOo that would satisfy the dependency. Old versions of OOo that do
not know the given dependency will then check for the optional attribute and, if present, neverthe-
less accept the dependency if the given version is large enough. This feature is only supported
since OO0 2.3.

Within the description.xml, dependencies are recorded as follows: An XML element whose name
consists of the namespace name http://openoffice.org/extensions/description/2006
and the local part dependencies may appear at most once as a child of the root element. This
element has as its element content an arbitrary number of child elements that are not further
constrained expect for the following: Each such child element should have an attribute whose
name consists of the namespace name http://openoffice.org/extensions/descrip-
tion/2006 and the local part name, and it may optionally have an attribute whose name consists
of the namespace http://openoffice.org/extensions/description/2006 and the local
part OpenOffice.org-minimal-version. Each such child element represents one depen-
dency, and the value of its name attribute shall contain the human-readable dependency name
(and the value, after normalization, should not be empty).

If an extensions is either not of type . oxt, .uno.pkg, or . zip, or does not contain a
description.xml, or the description.xml does not contain a dependencies element, or the depen-
dencies element does not contain any child elements, then the extension does not specify any
dependencies.

5.8 System Integration

When installing OpenOffice.org, the installation routine is adding information to the system which
can be used by other software products to install extensions. For example, double-clicking on an
extension in a file browser should start the Extension Manager and install the extension. Also mail
clients and web browser should offer a way of installing the extension, when it comes as an attach-
ment of an e-mail or is the target of a link.

357

358

Extension which are installed by way of using the system integration are always installed as user
extensions.

The system integration is available since OOo 2.2.

5.9 Online Update of Extensions

Extensions are often improved over a period of time. That is, publishers ship new versions of the
same extension with added functionality and/or bug fixes. Currently users must update their
extensions manually, that is, find out where to get updates, obtain the updates, remove the old
extensions, install the new extension. This feature will make updating easier. Users can run the
update mechanism from the Extension Manager. A dialog will show available updates and the
user will be able to choose which to install.

More particular information for this feature can be found in the specification at:

http:/ /specs.openoffice.org/appwide/packagemanager/online update for extensions.odt

Currently the update mechanism completely replaces an installed extension. That is, the update is
actually a complete new extension which could also be installed separately without replacing an
earlier version of this extension.

5.9.1 Running Online - Update

The update procedure needs to be started by the user in the Extension Manager. One can update
all installed extensions by pressing the Updates button or select particular extensions, press the
right mouse button and select Update in the context menu. The extension manager will then try
to obtain update information for the affected extension. If it finds that a new version of an extension
is available then it will be displayed in the update window.

In some cases an update cannot be installed, for example because the installed extension is shared
by all users and the current user does not have permission to manage shared extensions. In this
case a message to this regard is displayed in the window. To update shared extensions one needs
to close OpenOffice.org and run unopkg gui. Then the user has access to all extensions.

An extension may also not be installable, because it has unfulfilled dependencies. For example, the
extensions requires a particular version of OpenOffice.org.

The user can determine which of the updates he wants to install by checking them. When the
Download and Installation button is pressed then, as the name suggests, the extensions are being
downloaded and installed.

5.9.2 Concept

The actual download location of an update is contained in the update information which is typically
a xml file which is hosted on a server. Every update information contains only information for
exactly one extension. The most important information are the location of the update and the
version of this extension.

The Extension Manager needs to get hold of the update information in order to decide if the respec-
tive extension is a valid update. For example, it only makes sense to take a version into account
that is greater than the version of the already installed extension. The information where the

OpenOffice.org 2.3 Developer's Guide « June 2007

http://specs.openoffice.org/appwide/packagemanager/online_update_for_extensions.odt

update information is located is contained in the descripti